Skip navigation
DSpace logo
  • Accueil
  • Parcourir le dépôt par :
    • Communautés et collections
    • Naviguer les items de :
    • Date publié
    • Auteur(e)
    • Titre
    • Sujet
  • Langue
    • português
    • français
    • English
    • español
  • Services personnalisés :
    • Espace personnel
    • Recevoir les nouveautés
    • Modifier mon profil
logo UDO  />
</center>    
	</div>
	</div>
</div>	
                

<div class=
  1. UDOSpace - Universidad de Oriente/Venezuela
  2. 05. Núcleo de Sucre
  3. Postgrado (Núcleo Sucre)
  4. Magister Scientiarum (Núcleo Sucre)
  5. Magister Scientiarum en Matemáticas.sc
Veuillez utiliser cette adresse pour citer ce document : http://ri2.bib.udo.edu.ve:8080/jspui/handle/123456789/3664
Titre: SOBRE EL MOVIMIENTO DE UNA PARTÍCULA CARGADA BAJO UN CAMPO ELECTROMAGNÉTICO EN ESTRUCTURAS H-EQUIVALENTES PROYECTIVAS
Auteur(s): Acuña G., Marlene del V. (mvacuna@sucre.udo.edu.ve)
Mots-clés: dinámica de partículas cargadas
electromagnetismo
estructuras H-equivalentes
espacios proyectivos
Date de publication: jui-2009
Résumé: Sea μ=(M,􀗏,g) y μ=(M,􀗏,g) estructuras geométricas, (M variedad diferenciable, 􀗏, 􀗏 conexiones de Levi-Civita y g la métrica formal) tales soluciones de las ecuaciones de movimiento de una partícula cargada si F tiene potencial electromagnético y U=0. Esto se reduce a determinar estas ecuaciones a través de estructuras H-equivalentes proyectivas. que {(􀗏_{x}g)(Y,Z) = A(X,Y,Z) 􀗐 C^{∞}(M), X,Y,Z􀗐χ(M) S(X,Y) = 0 y {(􀗏_{U}g)(V,W) = 0 S(U,V) = 􀗏_{U}V-􀗏_{V}U-[U,V], U,V,W􀗐χ(M), donde χ(M) es el conjunto de los campos vectoriales sobre M, C^{∞}(M) el conjunto de las funciones diferenciables sobre M. S(X,Y) y S(U,V) son los campos de torsión de (M,􀗏) y (M,􀗏), respectivamente. Sea μ y μ estructuras H-equivalentes proyectivas y x(t) el movimiento de una partícula cargada bajo un campo electromagnético F y energía potencial U siendo F􀗐􀗨^{k}(M) una 2 - forma cerrada es decir dF=0. Se plantea en este trabajo: 1) Determinar las soluciones de las ecuaciones de movimiento de una partícula cargada, cuando F no tiene potencial y U≠0. Esto es equivalente a determinar el movimiento de una partícula cargada en un sistema hamiltoniano con un lagrangeano. 2) Determinar las
URI/URL: http://ri2.bib.udo.edu.ve:8080/jspui/handle/123456789/3664
Collection(s) :Magister Scientiarum en Matemáticas.sc

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
PG_MA.pdf604,59 kBAdobe PDFVoir/Ouvrir
Affichage détaillé


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 Portal Académico SIBIUDO

Repositorios Institucional de la Universidad de Oriente.
Configuracion y mantenimientos: Rafael Figueroa, Cesar Rodriguez, Pablo Ochoa y Marcos Ramírez