Por favor, use este identificador para citar o enlazar este ítem: http://ri2.bib.udo.edu.ve:8080/jspui/handle/123456789/2626
Título : Fundamentos de la Estadística Inferencial.
Autor : Gómez R., Mariangeles (Angeles23acuario@hotmail.com)
Ramos S., Yaritza (Yaritza78@hotmail.com)
Palabras clave : estadística
estadística inferencial
distribuciones muestrales
hipótesis
Fecha de publicación : 8-abr-2008
Editorial : Universidad de Oriente
Resumen : Inferir significa deducir algo de otra cosa. Nuestra investigación se refiere, a los fundamentos de la Estadística Inferencial, que se encarga de hacer deducciones de una población por medio de una muestra tomada a partir de ésta; sirviendo así para las organizaciones, porque le permite a le Gerencia tomar decisiones válidas, respecto a las predicciones futuras. Para analizar este análisis estadístico se requiere utilizar la distribución muestral porque a partir de la muestra seleccionada de una población, puede construirse variables aleatoria alternativa, de cuyo análisis se desprenden interesantes propiedades estadísticas (distribución muestral de la media y de la proporción). Los problemas que se tratan en Inferencia Estadística, se basan en dos clases: la estimación o intervalo de confianza y las pruebas de hipótesis. En donde el intervalo de confianza viene dado por un rango de valores, dentro del cual se espera encontrar el valor del parámetro estudiado; y las pruebas de hipótesis, que son supuestos que se plantea el investigador antes de iniciar una investigación, partiendo de una muestra aleatoria significativa, para extraer conclusiones que permitan aceptar o rechazar una hipótesis previamente emitida, sobre el valor de un parámetro desconocido, el cual aborda una serie de pasos. El análisis de regresión y correlación, permite relacionar dos o más variables (variable independiente y variable dependiente). El análisis de varianza, sirve para comparar si los valores de un conjunto de datos numéricos, son significativamente distintos a los valores de otros o más conjunto de datos. Como en la práctica todas las poblaciones no pueden tomarse como normales, por situaciones en donde no es posible formular una hipótesis segura sobre el valor de un parámetro, surgen las pruebas no paramétricas (ji-cuadrado), éstas no dependen de un solo tipo de distribución.
URI : http://ri2.bib.udo.edu.ve:8080/jspui/handle/123456789/2626
Aparece en las colecciones: Licenciatura en Contaduría Pública.sc

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
tesis-GomezyRamos.pdf1,88 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.