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INTRODUCCION

En este trabajo se presentan algunos resultados de las investigaciones
que el autor ha venido desarrollando, junto a otros investigadores, durante
estos Ultimos cuatro afios en las dreas de teorfa de operadores, teorfa espec-
tral y topologia, y que han conducido a varios articulos de investigacién con
inéditos resultados, publicados o aceptados para su publicacién en revistas
arbitradas nacionales e internacionales, asi como también a un buen niimero
de tesis de pregrado y de postgrado.

El trabajo presenta dos partes claramente diferenciadas, la primera parte
trata de la teoria de Fredholm y su generalizacién en el sentido de Berkani,
estudiada desde el punto de vista de la teoria espectral local, y sus impli-
caciones en los teoremas generalizados de Weyl. Esta parte consta de los
siguientes articulos:

P. Aiena, C. Carpintero y E. Rosas, ” Browder’s theorems and the spec-
tral mapping theorem”. Divulgaciones Matematicas, Vol. 15, N°. 2
(2007).

P. Aiena, M. Biondi y C. Carpintero, ”On Drazin Invertibility”. Pro-
ceedings of the American Mathematical Society, Vol. 136, N°. 8 (2008).

C. Carpintero, O. Garcia, E. Rosas y J. Sanabria, ” B-Browder spectra
and localized SVEP”. Rendiconti del Circolo Matematico di Palermo,
57, NY. 2 (2008).

C. Carpintero, D. Munoz, E. Rosas, O. Garcia y J. Sanabria, ”Gen-
eralized Weyl’s theorems for polaroid operators ”. Por aparecer en
Carpathian Journal of Mathematics, Vol. 27, N°. 1 (2011).

En los cuales se producen aportes significativos en lo referente a relaciones
espectrales entre los espectros originados en la teorfa de Fredholm y los origi-
nados en la generalizacién de esta en sentido de Berkani, asi como también,
se extienden y mejoran muchos resultados aparecidos recientemente en la
literatura relacionada con estas dreas.

La segunda parte, trata de nociones topoldgicas generalizadas via opera-
dores y estructuras minimales, y consta de los articulos siguientes:



C. Carpintero, E. Rosas y J. Sanabria, 7 A Tychonoff theorem for a-
compactness and some applications”. Indian Journal of Mathematics,

Vol. 49, N°. 1 (2007).

C. Carpintero, E. Rosas y M. Salas, ”Minimal structures and separa-
tions properties”. International Journal of Pure and Applied Mathe-
matics, Vol. 34, N°. 4 (2007).

M. Salas, C. Carpintero y E. Rosas, ” Conjuntos mx-cerrados genera-
lizados”. Divulgaciones Mateméticas, Vol. 15, N°. 1 (2007).

C. Carpintero, E. Rosas, O. Ozbakir y J. Salazar, ” Inadmissible families
and product of generalized topologies”. International Mathematical
Forum, Vol. 5, N°. 63 (2010).

En dichos articulos, se logran probar nuevos resultados relativos a formas
generalizadas de compacidad sobre el espacio producto cuando actiia un
operador. Ademads, se extienden propiedades de separacién y de conjun-
tos g-cerrados en el contexto de las m-estructuras, y en esa misma direccién
se obtienen resultados sobre el producto de m-espacios y topologias gene-
ralizadas, respectivamente, de las cuales se derivan importantes aplicaciones
concretas.



PARTE I

TEORIA DE FREDHOLM, SU GENERALIZACION Y
TEOREMAS TIPO WEYL

Con el fin de dar una visién global del contenido, orientacién y propdsito
de los articulos tratados en esta parte del trabajo, se describen a continuacién
los aspectos que motivaron el desarrollo de los mismos, asi como también los
resultados obtenidos.

La teoria de Fredholm tuvo su origen en el estudio de la solucién de las
ecuaciones integrales desde un punto de vista abstracto. Ha sido aplicada
en teoria de espacios de Banach y ha sido una de las fuentes de inspiracién
para el estudio de diversas nociones entre las que podemos citar; semigrupos
de operadores, operadores estrictamente singulares, estrictamente cosingu-
lares, etc. Ciertos tipos especiales de operadores juegan un importante papel
en dicha teoria, estos son los operadores de Browder (conocidos también en
la literatura como operadores de Riesz-Schauder), sus generalizaciones, que
son los operadores superiormente o inferiormente semi-Browder (introducidos
por R. Harte ([12])) v los operadores de Weyl, denominados asi en honor a
Herman Weyl ([20]). Inspirado en el trabajo de Weyl ([20]), Coburn ([6]) in-
troduce en forma abstracta el teorema de Weyl. Despiies de Coburn, diversos
autores empleando los espectros derivados de la teoria cldsica de Fredholm,
introducen otras variantes del teorema de Weyl. Entre los que podemos citar,
el teorema de Browder y el teorema de a-Browder, introducidos por R. Harte
y W. Y. Lee en 1997 ([13]), y el teorema de a-Weyl, introducido por V.
Rakocevi¢ ([19]).

Clésicamente, la teoria de Fredholm ha sido descrita desde varios pun-
tos de vista, a saber, a través de caracterizaciones perturbativas o mediante
ideales ([14],[5]). Pero, en el ano 1975, J. Finch ([10]) introduce una versién
localizada en un punto de la propiedad de la extensién univaluada para un
operador, SV EP (por sus siglas en inglés: single valued extension property),
la cual resulté ser muy apropiada para el estudio de propiedades espectrales
relativas a la teoria de Fredholm, ya que permite estudiar los operadores



semi-Fredholm empleando técnicas y elementos propios de la teoria espec-
tral local. Esta fusién de la teoria de Fredholm y la teoria espectral local, a
través de la SV EP local, ha producido una gran cantidad de resultados en
esta ultima década. En esta parte del trabajo se presentan algunos resultados
en esta direccién, en los que el autor ha estado trabajando en estos tltimos
cuatro anos. En primer lugar se presenta el articulo titulado ” Browder’s the-
orems and the spectral mapping theorem” de P. Aiena, C. Carpintero y E.
Rosas, publicado el ano 2007, en la revista Divulgaciones Mateméticas, en el
cual se dan caracterizaciones para los teoremas de Browder y a-Browder de
un operador en términos de la SV EP local y de ciertos subconjuntos propios
del plano complejo asociados con un operador.

Motivado por la teorfa de Fredholm, M. Berkani ([2],[3]) introduce varias
clases de operadores mucho més amplias que la clase de los operadores semi-
Fredholm, los cuales son denominados operadores semi B-Fredholm, semi
B-Browder y semi B-Weyl. Asi mismo, junto con J. Koliha ([4]) introducen,
en el contexto de los espectros generalizados, nuevas versiones mas fuertes
que los teoremas de Browder, a-Browder y a-Weyl, conocidos como los teo-
remas generalizados de Berkani. Estos son, los teoremas de B-Browder, a-
B-Browder, B-Weyl y a-B-Weyl. Fn este contexto se presenta, en segundo
lugar, el articulo titulado ”On Drazin Invertibility” de P. Aiena, M. Bion-
di y C. Carpintero, publicado el ano 2008, en la revista Proceedings of the
American Mathematical Society, en el que se aborda el estudio de una par-
ticularizacién del concepto de Drazin invertibilidad, dado por M. P. Drazin
([9]), para el caso del algebra de los operadores que actian de un espacio de
Banach complejo en si mismo; obteniendo caracterizaciones de los operadores
que son Drazin invertibles, a través de la SV E P, asi como algunas relaciones
de éstos con los operadores generalizados de Berkani. Seguidamente se pre-
senta también, el articulo titulado ”B-Browder spectra and localized SVEP”
de C. Carpintero, O. Garcia, E. Rosas y J. Sanabria, publicado el afnio 2008,
en la revista Rendiconti del Circolo Matematico di Palermo, en el cual se lo-
gra extender los resultados relativos a los espectros semi-Browder obtenidos
en ([1]) para esta nueva clase de espectros semi B-Browder, semi B-Weyl y
semi B-Fredholm, introducidos por Berkani.

Finalmente, se presenta el articulo titulado ” Generalized Weyl’s theorems

for polaroid operators ” de C. Carpintero, D. Mufioz, E. Rosas, O. Garcia y J.
Sanabria; el cual aparecerd publicado este ano 2011, en la revista Carpathian
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Journal of Mathematics. En este articulo, se logra obtener una multiplicidad
de descripciones tanto de tipo algebraico, como topolédgicas, para los teore-
mas de B-Weyl y a-B-Weyl de un operador, en base a las cuales se obtienen
descripciones de los teoremas de B-Weyl y a-B-Weyl para la importante clase
de los operadores polaroides. De esta forma se obtiene, de manera inmediata,
la caracterizacion de estos teoremas para distintas subclases particulares de
operadores contenidas en esta, tales como los operadores paranormales, alge-
braicamente paranormales, hiponormales, M-hiponormales, p-hiponormales
v log-hiponormales, entre otros, cada uno de los cuales hasta ahora habian
sido estudiados en forma aislada y con argumentos mucho mas sofisticados.



1.1. TEOREMAS DE BROWDER Y EL TEOREMA DE LA
APLICACION ESPECTRAL
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Abstract

A bounded linear operator T' € L(X) on a Banach space X is said
to satisfy Browder’s theorem if two important spectra, originating from
Fredholm theory, the Browder spectrum and the Weyl spectrum, coin-
cide. This expository article also concerns with an approximate point
version of Browder’s theorem. A bounded linear operator T' € L(X)
is said to satisfy a-Browder’s theorem if the upper semi-Browder spec-
trum coincides with the approximate point Weyl spectrum. In this note
we give several characterizations of operators satisfying these theorems.
Most of these characterizations are obtained by using a localized version
of the single-valued extension property of T'. This paper also deals with
the relationships between Browder’s theorem, a-Browder’s theorem and
the spectral mapping theorem for certain parts of the spectrum.
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208 Pietro Aiena, Carlos Carpintero, Ennis Rosas

Resumen

Un operador lineal acotado T' € L(X) sobre un espacio de Banach
X se dice que satisface el teorema de Browder, si dos importantes es-
pectros, en el contexto de la teoria de Fredholm, el espectro de Browder
y el espectro de Weyl, coinciden. Este articulo expositivo trata con una
versién puntual del teorema de Browder. Un operador lineal acotado
T € L(X) sobre un espacio de Banach X se dice que satisface el teore-
ma de a-Browder si el espectro superior semi-Browder coincide con el
espectro puntual aproximado de Weyl. En este nota damos varias carac-
terizaciones de operadores que satisfacen estos teoremas. La mayori de
estas caracterizaciones se obtienen de versiones localizadas de la pro-
piedad de extensién univaluada de T. Este trabajo también considera
las relaciones entre el teorema de Browder el teorema a-Browder y el
teorema de transformacion espectral para ciertas partes del espectro.
Palabras y frases clave: Teoria espectral local, teoria de Fredholm,
teorema de Weyl.

1 Introduction and definitions

If X is an infinite-dimensional complex Banach space and T € L(X) is a
bounded linear operator, we denote by «(7T') := dim ker T, the dimension of
the null space ker T, and by B(T) := codimT(X) the codimension of the
range T(X). Two important classes in Fredholm theory are given by the
class of all upper semi-Fredholm operators &, (X) := {T € L(X) : «(T) <
oo and T(X) is closed}, and the class of all lower semi-Fredholm operators
defined by ®_(X) :={T € L(X) : B(T) < co}. The class of all semi-Fredholm
operators is defined by ®4(X) := &, (X) U P_(X), while &(X) := P (X)N
®_(X) defines the class of all Fredholm operators. The index of T € &L (X)
is defined by ind (T') := a(T) — B(T). Recall that a bounded operator T is
said bounded below if it is injective and it has closed range. Define

Wi (X):={T € ®,(X):indT < 0},

and
W_(X):={T € ®_(X):indT > 0}.

The set of Weyl operators is defined by
W(X) =W (X)NW_(X)={T € &(X) : ind T = 0}.

The classes of operators defined above generate the following spectra. The
Fredholm spectrum (known in literature also as essential spectrum) is defined

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 207-226



Browder’s theorems and the spectral mapping theorem 209

by
of(T):={AeC: N[ -T ¢ d(X)}.

The Weyl spectrum is defined by

ow(T):={AeC: N[ -T ¢ W(X)},
the Weyl essential approximate point spectrum is defined by

owalT) i= {A € C: AT =T ¢ Wy (X)},
and the Weyl essential surjectivity spectrum is defined by

ows(T) :={AeC: A\N[-T ¢ W_(X)}.
Denote by

0.(T) :={X € C: AI — T is not bounded below},
the approzimate point spectrum, and by
os(T) :={\ € C: A\ — T is not surjective},

the surjectivity spectrum.

The spectrum oy, (T) admits a nice characterization: it is the intersection
of all approximate point spectra o, (T 4+ K) of compact perturbations K of T
while, dually, o,,s(T) is the intersection of all surjectivity spectra os(T + K)
of compact perturbations K of T, see for instance [1, Theorem 3.65]. From
the classical Fredholm theory we have

Owa(T) = ows(T*) and  owa(T") = ows(T).

This paper concerns also with two other classical quantities associated with
an operator T: the ascent p := p(T), i.e. the smallest non-negative integer
p such that ker TP = ker TP*! and the descent q := q(T), i.e the smallest
non-negative integer ¢, such that 79(X) = T9+1(X). If such integers do not
exist we shall set p(T) = oo and ¢(T) = oo, respectively. It is well-known
that if p(T) and ¢(T) are both finite then p(T") = ¢(T'), see [1, Theorem 3.3
]. Moreover, 0 < p(AI —T) = g(AI —T) < oo if and only if A belongs to the
spectrum o(7T) and is a pole of the function resolvent A\ — (A — T)~ !, see
Proposition 50.2 of [18]. The class of all Browder operators is defined

B(X) := {T € ®(X) : p(T) = q(T) < oo},

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 207-226



210 Pietro Aiena, Carlos Carpintero, Ennis Rosas

the class of all upper semi-Browder operators is defined
By(X) i={T € d..(X) : p(T) < o0},
while the class of all lower semi-Browder operators is defined
B_(X):={T € ®_(X) :¢q(T) < co}.
Obviously, B(X) = B4 (X)N B_(X) and
B(X) S W(X), Bi(X)CWi(X), B_(X)CW_(X)

see [1, Theorem 3.4].
The Browder spectrum of T' € L(X) is defined by

op(T):={Ae€C: \[-T ¢ B(X)},
the upper semi-Browder spectrum is defined by
oun(T) :={AeC: N[ -T ¢ B(X)},
and analogously the lower semi-Browder spectrum is defined by
o(T):={AeC: \N[-T ¢ B_(X)}.

Clearly,

ot(T) C ow(T) C on,(T),

and
oub(T) = o,(T*) and op(T) = o, (T7).

Furthermore, by part (v) of Theorem 3.65 [1] we have

oub(T) = owa(T) Uaccoa(T), (1)
o (T) = ows(T) Uaccos(T), (2)

and
op(T) = 0w (T) Uacco(T), (3)

where we write acc K for the set of all cluster points of K C C.
A bounded operator T' € L(X) is said to be semi-regular if it has closed
range and
ker T" C T(X) for all m € N.

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 207-226



Browder’s theorems and the spectral mapping theorem 211

The Kato spectrum is defined by
ox(T) :={\ € C: AI — T is not semi-regular}.

Note that o (7T') is a non-empty compact subset of C, since it contains the
boundary of the spectrum, see [1, Theorem 1.75]. An operator T € L(X) is
said to admit a generalized Kato decomposition, abbreviated GKD, if there
exists a pair of T-invariant closed subspaces (M, N) such that X = M @& N,
the restriction T' |M is semi-regular and T |N is quasi-nilpotent. A relevant
case is obtained if we assume in the definition above that T' |N is nilpotent.
In this case T is said to be of Kato type. If N is finite-dimensional then
T is said to be essentially semi-regular. Every semi-Fredholm operator is
essentially semi-regular, by the classical result of Kato, see Theorem 1.62 of
[1]. Recall that T' € L(X) is said to admit a generalized inverse S € L(X)
if TST=T. It is well known that T" admits a generalized inverse if and only
if both subspaces ker T" and T'(X) are complemented in X. It is well-known
that every Fredholm operator admits a generalized inverse, see Theorem 7.3
of [1]. A ”complemented” version of Kato operators is given by the Saphar
operators: T € L(X) is said to be Saphar if T is semi-regular and admits a
generalized inverse. The Saphar spectrum is defined by

0sa(T) :={\ € C: AI — T is not Saphar}.

Clearly, ox(T) C 0g(T), s0 0su(T) is nonempty; for other properties on

Saphar operators see Miiller [22, Chapter II, §13].

2 SVEP

There is an elegant interplay between Fredholm theory and the single-valued
extension property, an important role that has a crucial role in local spectral
theory. This property was introduced in the early years of local spectral theory
by Dunford [13], [14] and plays an important role in the recent monographs
by Laursen and Neumann [20], or by Aiena [1]. Recently, there has been a
flurry of activity regarding a localized version of the single-valued extension
property, considered first by [15] and examined in several more recent papers,
for instance [21], [5], and [7].

Definition 2.1. Let X be a complex Banach space and T € L(X). The
operator T' is said to have the single valued extension property at Ay € C
(abbreviated SVEP at \o), if for every open disc U of Ao, the only analytic

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 207-226



212 Pietro Aiena, Carlos Carpintero, Ennis Rosas

function f: U — X which satisfies the equation
M -=T)f(A\)=0, forallAeU

is the function f = 0. An operator T € L(X) is said to have SVEP if T has
SVEP at every point A € C.

The SVEP may be characterized by means of some typical tools of the
local spectral theory, see [8] or Proposition 1.2.16 of [20]. Note that by the
identity theorem for analytic function both 7" and T* have SVEP at every
point of the boundary do(T) of the spectrum. In particular, both T" and the
dual T have SVEP at the isolated points of o(T).

A basic result links the ascent, descent and localized SVEP:

p(AMl —T) < co = T has SVEP at A,

and dually
qg(AMI —T) < 0o = T* has SVEP at ),

see [1, Theorem 3.8].
Furthermore, from the definition of localized SVEP it is easy to see that

0a(T) does not cluster at A = T has SVEP at A, (4)

while
0s(T) does not cluster at A = T has SVEP at .

An important subspace in local spectral theory is the quasi-nilpotent part of
T, namely, the set

Hy(T) = {z € X : lim ||T"z||* = 0}.

Clearly, ker (T™) C Ho(T) for every m € N. Moreover, T is quasi-nilpotent
if and only if Ho(T) = X, see [1, Theorem 1.68]. If T' € L(X), the analytic
core K(T) is the set of all € X such that there exists a constant ¢ > 0
and a sequence of elements z,, € X such that x¢9 = x,Tx, = z,_1, and
lznll < ™||z| for all n € N, see [1] for informations on the subspaces Hy(T),
K (T). The subspaces Hy(T) and K(T) are invariant under T and may be not
closed. We have

Ho(M —T) closed = T has SVEP at A,

see [5].
In the following theorem we collect some characterizations of SVEP for
operators of Kato type.

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 207-226
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Theorem 2.2. Suppose that \oI — T is of Kato type. Then the following
statements are equivalent:

(i) T has SVEP at Ao;

(ii) p(Aol —T') < o005

(iii) Ho(AoI —T) is closed;

(iv) 0.(T) does not cluster at A.

If \oI =T is essentially semi-regular the statements (1) - (iv) are equivalent
to the following condition:

(v) Ho(MI — T) is finite-dimensional.

If \oI — T is semi-reqular the statements (i) - (v) are equivalent to the
following condition:

(vi) Aol — T is injective.

Dually, the following statements are equivalent:

(vii) T* has SVEP at \o;

(viii) g(Aol = T') < o0;

(ix) 0s(T) does not cluster at \.

If \oI — T is essentially semi-regular the statements (vi) - (viii) are equiv-
alent to the following condition:

(x) K(AI —T) is finite-codimensional.

If \oI — T is semi-regular the statements (vii) - (x) are equivalent to the
following condition:

(xi) Aol — T is surjective.

Remark 2.3. Note that the condition p(T) < oo (respectively, ¢(T) < oo)
implies for a semi-Fredholm that ind T < 0 (respectively, ind T > 0), see [1,
Theorem 3.4]. Consequently, if T has SVEP then A\ ¢ o¢(T) then ind (A —
T) <0, while if 7* has SVEP then ind (A —T) > 0.

Let Ag be an isolated point of o(T) and let Py denote the spectral projec-

tion )
Pyi=— [ (M -T)""d\
211 T

associated with {Ag}, via the classical Riesz functional calculus. A classical
result shows that the range Py(X) is N := Ho(Aol — T), see Heuser [18,
Proposition 49.1], while ker P, is the analytic core M := K (Aol —T) of \gI—T,
see [24] and [21]. In this case, X = M & N and

oAl =T|N) ={Xo}, o(Aol =T|M) =o(T)\{ro},

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 207-226



214 Pietro Aiena, Carlos Carpintero, Ennis Rosas

so Aol — T'|M is invertible and hence Hy(AoI — T|M) = {0}. Therefore from
the decomposition Ho(AI —T) = Ho(AI —T|M) @ Ho(MoI —T|N) we deduce
that N = Ho(AgI — T|N), so Aol — T|N is quasi-nilpotent. Hence the pair
(M,N) is a GKD for \gI —T.

Corollary 2.4. Let Ao be an isolated point of o(T'). Then
X=HoyAI-T)®dK(MNI-T)

and the following assertions are equivalent:
(i) NI — T is semi-Fredholm;
(ii) Ho(AoI —T) is finite-dimensional;
(iii) K(Aol —T) is finite-codimensional.

Proof. Since for every operator T' € L(X), both T and T* have SVEP at
any isolated point, the equivalence of the assertions easily follows from the
decomposition X = Hy(AI — T) & K(AI — T), and from Theorem 2.2. =

3 Browder’s theorem

In 1997 Harte and W. Y. Lee [16] have christened that Browder’s theorem
holds for T if
ow(T) = ou(T),

or equivalently, by (3), if
acco(T) C ow(T). (5)

Let write iso K for the set of all isolated points of K C C. To look more closely
to Browder’s theorem, let us introduce the following parts of the spectrum:
For a bounded operator T' € L(X) define

poo(T) :=c(T)\on(T) ={A€o(T): Ml - T € B(X)},
the set of all Riesz points in o(T). Finally, let us consider the following set:
A(T) :=0(T)\ ow(T).

Clearly, if A € A(T') then A\I — T € W(X) and since A € o(T) it follows that
a(M —=T) =M\ —T) >0, so we can write

AT)={AeC: N -TeW(X),0<aX -T)}.

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 207-226



Browder’s theorems and the spectral mapping theorem 215

The set A(T) has been recently studied in [16], where the points of A(T) are
called generalized Riesz points. It is easily seen that

poo(T) C A(T) for all T € L(X).

Our first result shows that Browder’s theorem is equivalent to the localized
SVEP at some points of C.

Theorem 3.1. For an operator T € L(X) the following statements are equiv-
alent:
(i) poo(T') = A(T);

(ii) T satisfies Browder’s theorem;
(iii) T* satisfies Browder’s theorem;
(iv) T has SVEP at every A ¢ ow(T);
(v) T* has SVEP at every \ ¢ ow(T).

From Theorem 3.1 we deduce that the SVEP for either 7" or T* entails that
both T" and T™* satisfy Browder’s theorem. However, the following example
shows that SVEP for T" or T™ is a not necessary condition for Browder’s
theorem.

Example 3.2. Let T := L & L* ® Q, where L is the unilateral left shift on
(?(N), defined by

L(z1,20,...) = (x2,23,---), (x,) € *(N),

and @ is any quasi-nilpotent operator. L does not have SVEP, see [1, p. 71],
so also T and T™* do not have SVEP, see Theorem 2.9 of [1]. On the other
hand, we have o,(T") = 0w (T) = D, where D is the closed unit disc in C, so
that Browder’ theorem holds for 7'

A very clear spectral picture of operators for which Browder’s theorem
holds is given by the following theorem:

Theorem 3.3. [3] For an operator T € L(X) the following statements are
equivalent:

(i) T satisfies Browder’s theorem;

(ii) Every A € A(T) is an isolated point of o(T');
(iii) A(T) C 9o(T), OoT) the topological boundary of o(T);
(iv) int A(T) = 0, int A(T) the interior of A(T);

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 207-226



216 Pietro Aiena, Carlos Carpintero, Ennis Rosas

Other characterizations of Browder’s theorem involve the quasi-nilpotent
part and the analytic core of T

Theorem 3.4. For a bounded operator T € L(X) Browder’s theorem holds
precisely when one of the following statements holds;

(i) Ho(M —T) is finite-dimensional for every A € A(T);

(ii) Ho(AL —T) is closed for all X € A(T);

(iii) K(AI —T) is finite-codimensional for all X € A(T).

Define
O'1(T) = O'W(T) U O’k(T).

We show now, by using different methods, some recent results of X. Cao,
M. Guo, B. Meng [10]. These results characterize Browder’s theorem through
some special parts of the spectrum defined by means the concept of semi-
regularity.

Theorem 3.5. For a bounded operator the following statements are equiva-
lent:
i) T satisfies Browder’s theorem;

(
(i) o(T) = o1(T);

(iif) A(T) € o1(T),

(iv) A(T) Cisooq(T).

(v) ou(T) € 01(T);

Proof. The equivalence (i) < (ii) has been proved in [10], but is clear from
Theorem 3.3.

(i) & (iil) Suppose that T satisfies Browder’s theorem or equivalently, by
Theorem 3.3, that A(T) C ox(T). Then A(T) C ow(T) U ox(T) = o1(T).
Conversely, if A(T) C 01(T) then A(T) C ox(T), since by definition A(T) N
ow(T) = 0.
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(iii)= (iv) Suppose that the inclusion A(T) C o1(T) holds. We know
by the first part of the proof that this inclusion is equivalent to Browder’s
theorem, or also to the equality o(T) = o1(T'). By Theorem 3.3 we then have

A(T) Cisoo(T) =isoo1(T).

(iv)= (iii) Obvious.
(i) = (v) If T satisfies Browder’s theorem then o1,(T) = 0w (T) C o1(T).
(v) = (ii) Suppose that o, (T) C 01(T). We show that o(T) = o1(T). It
suffices only to show o(T') C 01(T). Let A ¢ 01(T) = 0w (T) U 0x(T). Then
A ¢ op(T), so A is an isolated point of o(T) and a(AM — T) = (A — T).
Since A ¢ ox(T) then AI — T is semi-regular and the SVEP ar X implies by
Theorem 2.2 that a(A] —T) = (A —T) =0, i.e. A ¢ o(T). .

By passing we note that the paper by X. Cao, M. Guo, and B. Meng [10]
contains two mistakes. The authors claim in Lemma 1.1 that isooy(T) C
ow(T) for every T € L(X). This is false, for instance if A is a Riesz point
of T then A € 9o (T), since A is isolated in o(T), and hence A € oy (T), see
[1, Theorem 1.75], so A € isoox(T"). On the other hand, A\I — T is Weyl and
hence \ ¢ o (7).

Also the equivalence: Browder’s theorem for T' < o(T) \ oy (T") C iso oy (T),
claimed in Corollary 2.3 of [10] is not corrected, the correct statement is the
equivalence (i) < (vi) established in Theorem 3.3.

Denote by H(c(T)) the set of all analytic functions defined on a neigh-
borhood of o(T), let f(T) be defined by means of the classical functional
calculus. It should be noted that the spectral mapping theorem does not hold
for 1(T). In fact we have the following result.

Theorem 3.6. [10] Suppose that T € L(X). For every f € H(o(T)) we
have o1(f(T)) C f(o1(T)). The equality f(o1(T)) = o1(f(T)) holds for every
f € H(o(T)) precisely when the spectral mapping theorem holds for oy (T),
i.e.,

flow(T)) = ow(f(T)) for all f € H(o(T)).

Note that the spectral mapping theorem for oy, (7") holds if either T" or T
satisfies SVEP, see also next Theorem 4.3. This is also an easy consequence
of Remark 2.3.

Theorem 3.7. [10] The spectral mapping theorem holds for o1(T) precisely
when ind( M —T) - ind(uI —T) > 0 for each pair \,u ¢ o¢(T).

In general, Browder’s theorem for 1" does not entail Browder’s theorem for
f(T). However, we have the following result.
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Theorem 3.8. Suppose that both T € L(X) and S € L(X) satisfy Browder’s
theorem, f € H(o(T)) and p a polynomial. Then we have:

(i) [10] Browder’s theorem holds for f(T) if and only if f(o1(T)) = o1(f(T)).

(ii) [10] Browder’s theorem holds for T & S if and only if o1(T)Uo1(S) =
o1 (T (&%) S)

(i) [16] Browder’s theorem holds for p(T) if and only if p(ow(T)) C
ow(p(T))-

(iv) [16] Browder’s theorem holds for T ® S if and only if 0w (T)Uow(S) C
ow(T & S).

Browder’s theorem survives under perturbation of compact operators K
commuting with 7. In fact, we have

ow(T+K)=0w(T) and on,(T+ K) = op(T); (6)

the first equality is a standard result from Fredholm theory, while the second
equality is due to V. Rakocevi¢ [23]. Tt is not difficult to extend this result
to Riesz operators commuting with T (recall that K € L(X) is said to be a
Riesz operator if A\ — K € ®(X) for all A € C\ {0}). Indeed, the equalities
(6) hold also in the case where K is Riesz [23]. An analogous result holds if
we assume that K is a commuting quasi-nilpotent operator, see [16, Theorem
11], since quasi-nilpotent operators are Riesz. These results may fail if K is
not assumed to commute, see [16, Example 12]. Browder’s theorem for 7" and
S transfers successfully to the tensor product T' @) S [17, Theorem 6]. In [16]
it is also shown that Browder’s theorem holds for a Hilbert space operator
T € L(H) if T is reduced by its finite dimensional eigenspaces.

Browder’s theorem entails the continuity of some mappings. To see this,
we need some preliminary definitions. Let (o,) be a sequence of compacts
subsets of C and define canonically its limit inferior by

liminfo, := {\ € C: there exists \,, € o, with A\, — A}
Define the limit superior of (o,,) by
limsup oy, := {X € C: there exists \,, € o, with A,, — A}

A mapping ¢, defined on L(X) whose values are compact subsets of C is said
to be upper semi-continuous at T (respectively, lower semi-continuos a T)
provided that if 7;, — T, in the norm topology, then limsup ¢(7},) C ¢(T)
(respectively, ¢(T) C liminf(T,)). If the map ¢ is both upper and lower
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semi-continuous then ¢ is said to be continuos at T. In this case we write
limp,en @(Tn) = @(T). In the following result we consider mappings that
associate to an operator its Browder spectrum or its Weyl spectrum.
Theorem 3.9. [12] If T € L(X) then the following assertions hold:

(i) The map T € L(X) — on(T) is continuous at Ty if and only if Brow-
der’s theorem holds for Tj.

(ii) If Browder’s theorem holds for Ty then the map T € L(X) — o(T) is
continuous at Tj.

By contrast, we see now that Browder’s theorem is equivalent to the dis-
continuity of some other mappings. Recall that reduced minimum modulus of
a non-zero operator T is defined by
[T

T) .= _—
,Y( ) acglkrtlar T diSt(I, ker T)

In the following result we use the concept of gap metric, see [19] for details.
Theorem 3.10. [3] For a bounded operator T € L(X) the following state-
ments are equivalent:

(i) T satisfies Browder’s theorem;

(ii) the mapping A — ker(A — T') is not continuous at every A € A(T) in
the gap metric;

(iii) the mapping X\ — y(AI —T) is not continuous at every A € A(T);

(iv) the mapping A — (M — T)(X) is not continuous at every X € A(T)
in the gap metric.

4 a-Browder’s theorem

An approximation point version of Browder’s theorem is given by the so-
called a-Browder’s theorem. A bounded operator T € L(X) is said to satisfy
a-Browder’s theorem if

Uwa(T) = Oub (T)u
or equivalently, by (1), if

acco,(T) C owa(T).
Define
P6o(T) = 0a(T) \ow(T) ={A € 0.(T) : M =T € B (X)},
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and let us consider the following set:
Au(T) := 0u(T) \ owa(T).
Since AI — T € W, (X) implies that (Al — T)(X) is closed, we can write
A(T)={AeC: AT -T e W,(X),0<a(M -T)}.

It should be noted that the set A,(7T) may be empty. This is, for instance,
the case of a right shift on ¢?(N). We have

poo(T) C 7go(T) for all T € L(X),

and
Po(T) C AL(T) Coy(T) forall T € L(X).

Theorem 4.1. For a bounded operator T € L(X), a-Browder’s theorem holds
for T if and only if p§y(T) = Ao (T). In particular, a-Browder’s theorem holds
whenever A, (T) = 0.

A precise description of operators satisfying a-Browder’s theorem may be
given in terms of SVEP at certain sets.
Theorem 4.2. If T € L(X) the following statements hold:

(i) T satisfies a-Browder’s theorem if and only if T has SVEP at every
A ¢ owa(T).

(ii) T* satisfies a-Browder’s theorem if and only if T* has SVEP at every
)\ ¢ UWS(T)'

(iil) If T has SVEP at every \ ¢ ows(T) then a-Browder’s theorem holds
for T™.

(iv) If T* has SVEP at every A ¢ owa(T) then a-Browder’s theorem holds
forT.

Since owa(T) C ow(T), from Theorem 4.2 and Theorem 3.1 we readily
obtain:

a-Browder’s theorem for T' = Browder’s theorem for T,
while

SVEP for either T' or T* = a-Browder’s theorem holds for both T',T*. (7)
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Note that the reverse of the assertions (iii) and (iv) of Theorem 3.1 gen-
erally do not hold. An example of unilateral weighted shifts 7" on ¢P(N) for
which a-Browder’s theorem holds for T (respectively, a-Browder’s theorem
holds for T*) and such that SVEP fails at some points A ¢ oyws(T) (respec-
tively, at some points A ¢ ow,(T) ) may be found in [4].

The implication of (7) may be considerably extended as follows.

Theorem 4.3. [11], [2] Let T € L(X) and suppose that T or T* satisfies
SVEP. Then a-Browder’s theorem holds for both f(T) and f(T*) for every
feH(o(T)), ie. owa(f(T)) =0ouw(f(T)). Furthermore,

ows(f(T)) = ow(f(T)),  ow(f(T)) = on(f(T)),

and the spectral mapping theorem holds for all the spectra 0w, (T), ows(T) and
ow(T).

Theorem 4.3 is an easy consequence of the fact that f(T") satisfies Brow-
der’s theorem and that the spectral mapping theorem holds for the Browder
spectrum and semi-Browder spectra, see [1, Theorem 3.69 and Theorem 3.70].
In general, the spectral mapping theorems for the Weyl spectra o (T'), owa(T)
and oyws(T) are liable to fail. Moreover, Browder’s theorem and the spectral
mapping theorem are independent. In [16, Example 6] is given an example of
an operator T' for which the spectral mapping theorem holds for o (T") but
Browder’s theorem fails for 7. Another example [16, Example 7] shows that
there exist operators for which Browder’s theorem holds, while the spectral
mapping theorem for the Weyl spectrum fails.

The following results are analogous to the results of Theorem 3.3, and give
a precise spectral picture of a-Browder’s theorem.

Theorem 4.4. [/], [10] For a bounded operator T € L(X) the following
statements are equivalent:

(i) T satisfies a-Browder’s theorem;
(i) Ao(T) Cisooa(T);

(iil) Ag(T) C 00,(T), 0o.(T) the topological boundary of o,(T);
(iv) 0u(T) = owa(T) U 0w (T);

(v) Ao(T) C ok(T);

(vi) A (T) Cisook(T);

(vii) Aa(T) C 00a(T);

(viii) Ag(T) C is0 ga(T).
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We also have:

Theorem 4.5. [3] T € L(X) satisfies a-Browder’s theorem if and only if
0a(T) = 0wa(T) Uiso o, (T). (8)
Analogously, a-Browder’s theorem holds for T* if and only if
0s(T) = ows(T) Uisoos(T). 9)
The results established above have some nice consequences.
Corollary 4.6. Suppose that T* has SVEP. Then Ay(T) Cisoo(T).

Proof. We can suppose that A,(T) is non-empty. If 7* has SVEP then a-
Browder’ s theorem holds for T, so by Theorem 4.4 A, C isoo,(T"). Moreover,
by Corollary 3.19 of [1] for all A € A,(T) we have ind(Al —T) < 0, so
0 < a(Al =T) < B(M —T), and hence A € o4(T). Now, if X € A,(T)
the SVEP for T* entails by Theorem 2.2 that A € isoos(T'), and hence A\ €
isoos(T) Nisoo,(T) = isoo(T). .

Corollary 4.7. Suppose that T € L(X) has SVEP and isoo,(T) = 0. Then
0a(T) = 0a(T) = ou(T). (10)
Analogously, if T* has SVEP and isoos(T) = (), then
0s(T) = ows(T) = ok (T). (11)

Proof. If T has SVEP then a-Browder’s theorem holds for 7. Since
iso 0, (T) = 0, by Theorem 4.4 we have we have A,(T) = 0.(T) \ owa(T) = 0.
Therefore 0,(T) = owa(T) and this set coincides with the spectrum oy (T),
see [1, Chapter 2].

If T* has SVEP and isoos(T) = 0, then isoo,(T*) = isoos(T) = 0 and
the first part implies that o,(T*) = owa(T*) = ox(T*). By duality we then
easily obtain that oy(T) = ows(T") = ow(T). .

The first part of the previous corollary applies to a right weighted shift
T on (P(N), where 1 < p < oco. In fact, if the spectral radius r(T) > 0
then iso 0, (T) = 0, since 0,(T) is a closed annulus (possible degenerate), see
Proposition 1.6.15 of [20], so (10) holds, while if »(T") = 0 then, trivially,
0a(T) = owa(T) = ox(T) = {0}. Of course, the equality (11) holds for any
left weighted shift. Corollary 4.7 also applies to non-invertible isometry, since
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for these operators we have 0,(T) = {\ € C: |A\| = 1}, see [20].

Asin Theorem 3.4, some characterizations of operators satisfying a-Browder’s
theorem may be given in terms of the quasi-nilpotent part Ho(A — T).

Theorem 4.8. For a bounded operator T € L(X) the following statements
are equivalent:

(i) a-Browder’s theorem holds for T.
(ii) Ho(A —T) is finite-dimensional for every A € Ay (T).
(i) Ho(A —T) is closed for every A\ € Ay(T).

Note that in Theorem 4.8 does not appear a characterization of a-Browder’s
theorem in terms of the analytic core K(AI —T'), analogous to that established
in Theorem 3.4. The authors in [4] have proved only the following implication:

Theorem 4.9. If K(A —T) is finite-codimensional for all X\ € A,(T) then
a-Browder’s theorem holds for T.

It would be of interest to prove whenever the converse of the result of
Theorem 4.9 holds.
Define
O'Q(T) = Uwa(T) U O'k(T).

Note that

a2(f(T)) € fo2(T)) forall f € H(o(T)),

see Lemma 3.5 of [10]. A necessary and sufficient condition for the spectral
mapping for o5(7T) is given in the next result.

Theorem 4.10. [10] The spectral mapping theorem holds for oo(T) precisely
when ind (A =T) - ind(uI —T) > 0 for each pair A\, € C such that \I =T €
O (X) and ul —T € _(X).

Using the spectral mapping theorem for ,(T"), see Theorem 2.48 of [1], it
is easy to derive the following result analogous to that established in Theorem
3.8

Theorem 4.11. [10] [12] Suppose that both T € L(X) and S € L(X) satisfy
a-Browder’s theorem and f € H(o(T)). Then we have:

(i) a-Browder’s theorem holds for f(T') if and only if f(o2(T)) = o2(f(T)).
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(ii) a-Browder’s theorem holds for the direct sum T @& S if and only if
UQ(T) U O'Q(S) = O'Q(T D S)

(iii) a-Browder’s theorem holds for the direct sum T @® S if and only if
Owa(T) U owa(S) = owa(T ® S).

Also a-Browder’s theorem survives under perturbation of Riesz operators
K commuting with T, where T satisfies a-Browder’s theorem. In fact, we
have
owa(T+ K) =0wa(T), ow(T+K)=o0w(T),

see [23]. Similar equalities hold for quasi-nilpotent perturbations @ commut-
ing with T, so that a-Browder’s theorem holds for T+ Q.

Note that a-Browder’s theorem transfers successfully to p(T'), p a polyno-
mial, if we assume that p(06(T)) = owe(p(T)). In fact, we have:

Theorem 4.12. [12] If the map T € L(X) — owa(T) is continuous at Ty
then a-Browder’s theorem holds for Ty. Furthermore, if a-Browder’s theorem
holds for T and p is a polynomial then a-Browder’s theorem holds for p(T) if

and only if p(0wa(T)) = owa(p(T)).

We conclude by noting that, as Browder’s theorem, a-Browder’s theorem
is equivalent to the discontinuity of some mappings.

Theorem 4.13. [4] For a bounded operator T € L(X) the following state-
ments are equivalent:

(i) T satisfies a-Browder’s theorem;

(ii) the mapping A — ker(AI — T) is not continuous at every A € Ay(T)
in the gap metric;

(iil) the mapping X — v(AI —T) is not continuous at every A € Ay(T);

(iv) the mapping A\ — (M — T)(X) is not continuous at every A € Ay(T)
in the gap metric.

References

[1] P. Aiena. Fredholm and local spectral theory, with application to multipli-
ers. Kluwer Acad. Publishers, 2004.

[2] P. Aiena, M. T. Biondi. Some spectral mapping theorems for semi-
Browder spectra through local spectral theory. Rend. Circ. Mat. Palermo
53(2004), 165-184.

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 207-226



Browder’s theorems and the spectral mapping theorem 225

[3]

[4]

P. Aiena, M. T. Biondi. Browder’s theorem and localized SVEP. Mediter-
ranean Journ. of Math. 2(2005), 137-151.

P. Aiena, C. Carpintero, E. Rosas. Some characterization of operators
satisfying a-Browder theorem. J. Math. Anal. Appl. 311(2005), 530-544.

P. Aiena, M. L. Colasante, M. Gonzalez. Operators which have a closed
quasi-nilpotent part. Proc. Amer. Math. Soc. 130(9)(2002).

P. Aiena, B. P. Duggal. Tensor products, multiplications and Weyl’s the-
orem. Rend. Circ. Mat. Palermo (2), 54(2005), no. 3, 387-395.

P. Aiena, T. L. Miller, M. M. Neumann. On a localized single valued
extension property. Math. Proc. Royal Irish Acad. 104A(2004), no. 1,
17-34.

P. Aiena, O. Monsalve. Operators which do not have the single valued
extension property. J. Math. Anal. Appl. 250(2000), 435-448.

P. Aiena, E. Rosas. The single valued extension property at the points
of the approzimate point spectrum. J. Math. Anal. Appl. 279(1)(2003),
180-188.

X. Cao, M. Guo, B. Meng. A note on Weyl’s theorem. 133(10)(2003),
Proc. Amer. Math. Soc. 2977-2984.

R. E. Curto, Y. M. Han. Weyl’s theorem, a-Weyl’s theorem, and local
spectral theory. J. London Math. Soc. (2) 67(2003), 499-509.

S. V. Djordjevié, Y. M. Han. A Browder’s theorem and spectral continu-
ity. Glasgow Math. J. 42(2000), 479-486.

N. Dunford. Spectral theory I. Resolution of the identity. Pacific J. Math.
2 (1952), 559-614.

N. Dunford. Spectral operators. Pacific J. Math. 4 (1954), 321-354.

J. K. Finch. The single valued extension property on a Banach space.
Pacific J. Math. 58 (1975), 61-69.

R. E. Harte, Woo Young Lee. Another note on Weyl’s theorem. Trans.
Amer. math. Soc. 349 (1997), 2115-2124.

Robin E. Harte, An-Hyun Kim. Polaroid operators and Weyl’s theorem
II. pre-print(2005).

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 207-226



226

Pietro Aiena, Carlos Carpintero, Ennis Rosas

[18]
[19]

[20]

[21]

22]

[23]

[24]

H. Heuser. Functional Analysis. (1982), Marcel Dekker, New York.

T. Kato. Perturbation theory for linear operators. Springer-Verlag, New
York. (1966).

K. B. Laursen, M. M. Neumann. Introduction to local spectral theory.
Clarendon Press, Oxford 2000.

M. Mbekhta. Sur la théorie spectrale locale et limite des nilpotents. Proc.
Amer. Math. Soc. 110 (1990), 621-631.

V. Miiller. Spectral theory of linears operators. Operator Theory, Ad-
vances and Applications 139, Birkauser 2003.

V. Rakocevi¢. Semi-Browder operators and perturbations. Studia Math.
122 (1996), 131-137.

P. Vrbovéd. On local spectral properties of operators in Banach spaces.
Czechoslovak Math. J. 23(98) (1973a), 483-92.

Divulgaciones Mateméticas Vol. 15 No. 2(2007), pp. 207-226



1.2. SOBRE LA INVERTIBILIDAD DE DRAZIN

2L



PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 136, Number 8, August 2008, Pages 2839-2848
S 0002-9939(08)09138-7

Article electronically published on March 28, 2008

ON DRAZIN INVERTIBILITY

PIETRO AIENA, MARIA T. BIONDI, AND CARLOS CARPINTERO

(Communicated by Joseph A. Ball)

ABSTRACT. The left Drazin spectrum and the Drazin spectrum coincide with
the upper semi-B-Browder spectrum and the B-Browder spectrum, respec-
tively. We also prove that some spectra coincide whenever T or T™* satisfies
the single-valued extension property.

1. INTRODUCTION AND PRELIMINARIES

Throughout this note L(X) will denote the algebra of all bounded linear op-
erators acting on an infinite-dimensional complex Banach space X. The operator
T € L(X) is said to be upper semi-Fredholm if its kernel ker T is finite-dimensional
and the range T'(X) is closed, while T' € L(X) is said to be lower semi-Fredholm if
T(X) is finite-codimensional. If either T" is upper or lower semi-Fredholm, then 7'
is said to be a semi-Fredholm operator, while T is said to be a Fredholm operator
if it is both upper and lower semi-Fredholm. If T' € L(X) is semi-Fredholm, the
classical index of T is defined by ind (T') := dim ker 7' — codim T'(X).

The concept of semi-Fredholm operators has been generalized by Berkani ([9],
[13] and [I1]) in the following way: for every T' € L(X) and a nonnegative integer
n let us denote by Tj, the restriction of 7' to T"(X) viewed as a map from the
space T"(X) into itself (we set Tig) = T'). T' € L(X) is said to be semi-B-Fredholm,
(resp. B-Fredholm, upper semi-B-Fredholm, lower semi-B-Fredholm,) if for some
integer n > 0 the range 7" (X) is closed and Tf, is a semi-Fredholm operator (resp.
Fredholm, upper semi-Fredholm, lower semi-Fredholm). In this case Tt is a semi-
Fredholm operator for all m > n ([I3]). This enables one to define the index of a
semi- B-Fredholm operator as ind T' = ind 1.

A bounded operator T' € L(X) is said to be a Weyl operator if T' is a Fredholm
operator having index 0. A bounded operator T' € L(X) is said to be B-Weyl if for
some integer n > 0 the range 7" (X) is closed and Tj,) is Weyl. The Weyl spectrum
and the B-Weyl spectrum are defined, respectively, by

ow(T) :={A € C: A\ — T is not Weyl}
and
opw(T) :={A € C: X[ — T is not B-Weyl}.
Recall that the ascent of an operator T € L(X) is defined as the smallest non-
negative integer p := p(T') such that ker TP = ker TP*1. If such an integer does not
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exist, we put p(T) = co. Analogously, the descent of T is defined as the smallest
nonnegative integer ¢ := ¢(7') such that T9(X) = T9%1(X), and if such an integer
does not exist, we put ¢(T') = oo. It is well known that if p(T") and ¢(7T') are both
finite, then p(T) = ¢(T'); see [I, Theorem 3.3]. Moreover, if A € C, the condition
0 <pAI =T) = q(M —T) < oo is equivalent to saying that A is a pole of the
resolvent. In this case A is an eigenvalue of T and an isolated point of the spectrum
o(T); see [I'7, Prop. 50.2].

The concept of Drazin invertibility [14] has been introduced in a more abstract
setting than operator theory [I4]. In the case of the Banach algebra L(X), T €
L(X) is said to be Drazin invertible (with a finite index) precisely when p(T) =
q(T) < oo and this is equivalent to saying that T = Ty & 11, where Ty is invertible
and 74 is nilpotent; see [19, Corollary 2.2] and [I8, Prop. A]. Every B-Fredholm
operator T' admits the representation T' = Ty & T, where T is Fredholm and T3 is
nilpotent [I1], so every Drazin invertible operator is B-Fredholm.

The concept of Drazin invertibility for bounded operators may be extended as
follows.

Definition 1.1. T € L(X) is said to be left Drazin invertible if p := p(T) < oo
and TPT(X) is closed; while T € L(X) is said to be right Drazin invertible if
q:=q(T) < oo and T?(X) is closed.

It should be noted that the condition ¢ = ¢(T') < co does not entails that T(X)
is closed; see Example 5 of [2I]. Clearly, T' € L(X) is both right and left Drazin
invertible if and only if T is Drazin invertible. In fact, if 0 < p := p(T') = ¢(T),
then TP(X) = TP*1(X) is the kernel of the spectral projection associated with the
spectral set {0}; see [I7, Prop. 50.2].

The left Drazin spectrum is then defined as

01a(T) :== {X € C: \I — T is not left Drazin invertible},
the right Drazin spectrum is defined as
ord(T) :={X € C: A\ — T is not right Drazin invertible},
and the Drazin spectrum is defined as
04(T) :={A € C: A\I — T is not Drazin invertible}.

Obviously, 0q(T) = 014(T) U 0va(T).

A bounded operator T' € L(X) is said to be Browder (resp. upper semi-Browder,
lower semi-Browder) if T is Fredholm and p(T) = ¢(T) < oo (resp. T is upper
semi-Fredholm and p(T) < oo, T is lower semi-Fredholm and ¢(7") < o0). Every
Browder operator is Weyl and hence, if

op(T) :={A € C: A\I — T is not Browder}

denotes the Browder spectrum of T, then o (T) C 0,(T). In the sequel by s, (T)
we shall denote the upper semi-Browder spectrum of T defined by

ousb(T) :={A € C: AI — T is not upper semi-Browder}.

Clearly, every bounded below operator T € L(X) (T injective with closed range)
is upper semi-Browder, while every surjective operator is lower semi-Browder. The
classical approzimate point spectrum of T will be denoted by ¢,(T') while by os(T)
we shall denote the surjectivity spectrum of T
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It is natural to extend the concept of semi-Browder operators as follows: A
bounded operator T € L(X) is said to be B-Browder (resp. upper semi-B-Browder,
lower semi-B-Browder) if for some integer n > 0 the range T"(X) is closed and
T}y) is Browder (resp. upper semi-Browder, lower semi-Browder). The respective
B-Browder spectra are denoted by op,(T), ousbn(T) and o15pn(T).

The main result of this paper establishes that T € L(X) is B-Browder (re-
spectively, upper semi-B-Browder, lower semi-Browder) if and only if T is Drazin
invertible (respectively, left Drazin invertible, right Drazin invertible); consequently
obb(T) = 0a(T), oupb(T) = 014(T) and oL (T) = 0va(T). We also prove that many
of the spectra before introduced coincide whenever T, or its dual T, satisfies the
single-valued extension property.

2. SVEP AND SEMI-B-BROWDER SPECTRA

A useful tool in the Fredholm theory is given by the localized single-valued
extension property. This property has an important role in local spectral theory;
see the recent monographs by Laursen and Neumann [20] and Aiena [I].

Definition 2.1. Let X be a complex Banach space and T € L(X). The operator
T is said to have the single-valued extension property at Ao € C (abbreviated SVEP
at Ag) if for every open disc D of Ay, the only analytic function f : U — X that
satisfies the equation (Al —T)f(A) = 0 for all A € D is the function f = 0. An
operator T € L(X) is said to have SVEP if T has SVEP at every point A € C.

Evidently, T' € L(X) has SVEP at every point of the resolvent p(T") := C\ o(T).
Moreover, from the identity theorem for analytic functions it is easily seen that T’
has SVEP at every point of the boundary do(T) of the spectrum. In particular, T
has SVEP at every isolated point of the spectrum. Note that the localized SVEP
is inherited by the restriction to closed invariant subspaces; i.e., if T has SVEP
at Ao and M is a closed T-invariant subspace of X, then T|M has SVEP at Ag.
Moreover, the set X(7") of all points A € C such that T' does not have SVEP at A is
an open set contained in the interior of the spectrum of T'. Consequently, if T" has
SVEP at each point A of an open punctured disc D\ {Ao} centered at Ay, then T
also has SVEP at A.

We have
(1) p(Al —T) < co = T has SVEP at A,
and dually,
(2) gAML —T) < co = T" has SVEP at X;

see [I, Theorem 3.8]. Furthermore, from the definition of localized SVEP it is easily
seen that

(3) 0a(T) does not cluster at A = T has SVEP at A,
and dually,
(4) 0s(T') does not cluster at A = T™ has SVEP at A.

Remark 2.2. The implications (), @), () and ) are actually equivalences if T is
a semi-Fredholm operator; see [5] or [I, Chapter 3].
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Lemma 2.3. If T € L(X) and p = p(T) < oo, then the following statements are
equivalent:

(i) there exists n > p+ 1 such that T™(X) is closed;

(il) T™(X) is closed for all n > p.

Proof. Define c(T) := dim(ker T%/ ker T*T1). Clearly, p = p(T') < oo entails that
c;(T) = 0foralli > p, so ki(T') := ¢j(T)—cj 1 (T) = 0 for all i > p. The equivalence

then easily follows from [21, Lemma 12]. O

Define
AT):={neN:m>nmeN=T"X)Nker T C T™(X)Nker T}.

The degree of stable iteration is defined as dis(T) := inf A(T) if A(T) # @, while
dis(T) = oo if A(T) = 0.

Definition 2.4. T € L(X) is said to be quasi-Fredholm of degree d if there exists
d € N such that:

(a) dis(T') = d,

(b) T™(X) is a closed subspace of X for each n > d,

(c) T(X) + ker T? is a closed subspace of X.

It should be noted that by Proposition 2.5 of [I3] every semi-B-Fredholm oper-
ator is quasi-Fredholm.

Theorem 2.5. For every T € L(X) the following statements are equivalent:
(i) T is left Drazin invertible;
(ii) There exists n € N such that T"(X) is closed and T, is bounded below;
(iii) T is semi-B-Fredholm and T has SVEP at 0.

Dually, if T € L(X) the following statements are equivalent:
(iv) T is right Drazin invertible;
(v) there exists n € N such that T"(X) is closed and T, is onto;
(vi) T is semi-B-Fredholm and T* has SVEP at 0.

Proof. (i) < (ii) Suppose that T is left Drazin invertible. Then p = p(T) < o©
and TP+1(X) is closed. From Lemma it follows that T?(X) is closed. By [I],
Lemma 3.2] we have ker TNTP(X) = ker Tj,) = {0}, so T}, is injective. The range
of T}, is closed, since it coincides with TPTH(X); hence Ty is bounded below, so
the condition (ii) is satisfied.

Conversely, suppose that there exists n € N such that 7" (X) is closed and Tjy
is bounded below. Let us consider an element x € ker T"*!. Clearly, T(T"z) = 0
so T™x € ker T. Since Tz € T™(X) it then follows that 7"z € ker TN T™(X) =
ker T},) = {0}; thus 2 € ker T™. Therefore, ker T7*t! = ker T™, so T has finite
ascent p := p(T) < n. The range of T}, is the closed subspace T X), with
p+1<n+ 1. Therefore TP*!(X) is closed; thus T is left Drazin invertible.

(i) « (iii) Assume (i) or equivalently (ii). Then T has SVEP at 0, since p(T") <
oo and 7J,) is upper semi-Fredholm, so 7" is upper semi-B-Fredholm.

Conversely, suppose that T is semi-B-Fredholm and T has SVEP at 0. By
Proposition 3.2 of [10] if T' quasi-Fredholm, in particular if T' is semi-B-Fredholm,
then there exists n € N such that 7"(X) is closed and Tj,; is semi-regular (i.e., it
has closed range and its kernel is contained in the range of each iterate of Ti,)).
Since the restriction 7}, has SVEP at 0, from Theorem 2.49 of [1] it then follows
that 717, is bounded below.
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(iv) & (v) If ¢ := ¢(T) < oo, then T(T9(X)) = T9"1(X) = T9(X), so T
is onto. Moreover, T%(X) is closed by assumption. Conversely, if (v) holds, then
TH(X) =T"(X) so q := q(T) < n. Obviously, T9(X) = T"(X) is closed.

(v) & (vi). Assume (v), or equivalently (iv). Since q := ¢(T) < oo, then T™ has
SVEP at 0 and, clearly, T}, is lower semi-Fredholm, so (vi) holds. The opposite
implication has been proved in [2, Theorem 2.7]. O

Corollary 2.6. T € L(X) is Drazin invertible if and only if T is semi-B-Fredholm
and both T and T* have SVEP at 0.

The condition that T, or T*, has SVEP at 0 for semi-B-Fredholm operators,
more generally for quasi-Fredholm operators, may be characterized as follows:

Theorem 2.7. [2] Suppose that T € L(X) is quasi-Fredholm. Then the following
statements are equivalent:

(i) T has SVEP at 0;

(ii) 0. (T) does not cluster at 0.

Dually, if T € L(X) is quasi-Fredholm, then the following statements are equiv-
alent:

(iii) T* has SVEP at 0;

(iv) os(T) does not cluster at 0.

Given n € N let us denote by T,, : X/ker T — X/ker T™ the quotient map
defined canonically by T, & := Tz for each & € X := X/ker T", where z € 7.

Lemma 2.8. Suppose that T € L(X) and T"(X) is closed for some n € N. If Ti,
is upper semi-Fredholm, then T, is upper semi-Fredholm and ind T,, = ind Tj,).
Analogous statements hold if T}, is assumed to be lower semi-Fredholm, Weyl,
upper or lower semi-Browder, respectively.

Proof. The operator [T"] : X/ ker T" — T"(X) defined by
[T"|& =T"x, where x € Z,

is a bijection, and it easy to check that [T"]T;, = T},)[T"], from which the statements
follow. g

Theorem 2.9. Suppose that T € L(X). Then the following equivalences hold:
(i) T is upper semi-B-Browder if and only if T is left Drazin invertible.
(ii) T is lower semi-B-Browder if and only if T is right Drazin invertible.
(iii) T is B-Browder if and only if T is Drazin invertible.

Proof. (i) Trivially, every bounded below operator is upper semi-Browder. By
Theorem if T is left Drazin invertible, then T is upper semi-B-Browder.

Conversely, suppose that T is upper semi- B-Browder. By Lemma 2.8 then T,
is upper semi-Browder for some n € N and hence by Remark the condition
p(T,) < oo is equivalent to saying that 0,(T},) does not cluster at 0. Let D(0,¢) be
an open ball centered at 0 such that D(0,¢)\ {0} does not contain points of 0,(T},),
SO

(5) ker (Al —T;,) = {0} forall0 < |A| <e.

Since the restriction T'|ker T™ is nilpotent we also have that D(0,¢) \ {0} C
p(T|ker T™), p(T|ker T™) the resolvent of T|ker T, so

(6) (M —T)(ker T") =ker T" forall 0 < |A\| < e.
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Since for all 0 < |A| < € we also have ker (AI — T|ker T™) = {0}, it then easily
follows that ker (\I — T') = {0}, i.e. AT — T is injective for all 0 < |\| < e.

We show now that (M — T)(X) is closed for all 0 < |A| < e.

Set X := X/ker T" and let w € (A\I — T)(X) be arbitrary. Then there exists
z € X such that w = (M — T)z and hence @ = (A — Tp,)& € (M — T,,)(X).
Since A ¢ 0.(T},), then (A — T,,)(X) is closed, and hence there exists a sequence
(wy) C X such that (A — T),)w,, — W as n — +o0; thus

(M —T)w, —w — 2z, € ker T".
From (B) we know that there exists y,, € ker T" such that z, = (Al — T)y,, and
hence
M —T)w, — (M =Ty, = (M —T)(wy, — yn) — w,

so that (A —T)(X) is closed. We have shown that A\] — T is bounded below for all
0 < |A| < € and, consequently, 0 is an isolated point of o,(T"). This implies that T
has SVEP at 0 and since by assumption T is upper semi-B-Browder from Theorem
2.3 we then conclude that T is left Drazin invertible.

(ii) By Theorem 20 if T is right Drazin invertible, then there exists n € N such
that 7T}, is onto and hence lower semi-Browder.

Conversely, suppose that T is lower semi- B-Browder and let n € N such that T},
is lower semi-Browder. By Lemma 2.8 then T;, is lower semi-Browder and hence
the condition ¢(T,) < oo is equivalent to saying that os(7},) does not cluster at 0.
Let D(0, ) be an open ball centered at 0 such that D(0,¢) \ {0} does not contain
points of 04(T},). As in the proof of part (i) we have (A —T')(ker T™) = ker T™ for
all 0 < |A| < e. We show that (AT — T)(X) = X for all 0 < |\| < e. Since A\I — T,
is onto, for each x € X there exists y € X such that (A — T},)y = & and hence

x— A =T)y €ker T" = (A — T)(ker T").

Consequently, there exists z € ker T™ such that x — (M — T)y = (M — Tz, from
which it follows that

=M —T)(z+y) € (M —T)(X).

We have proved that AI — T is onto for all 0 < |A| < ¢; thus o5(T") does not cluster
at 0 and consequently 7% has SVEP at 0. By Theorem we then conclude that
T is right Drazin invertible.

(iii) Clear. O

Corollary 2.10. For every T € L(X) we have
oustb(T) = 0a(T),  osob(T) = 02a(T),  oub(T) = 0a(T).

3. BROWDER TYPE THEOREMS

Let us denote by USBF~(X) the class of all upper semi- B-Fredholm operators
with index less than or equal to 0, while by LSBFT(X) we denote the class of all
lower semi-B-Fredholm operators with index greater than or equal to 0. Set

Tushi- (T) :={A € C: N\ — T ¢ USBF~(X)}

and
Ope+ (T) :={AeC: AN[-T ¢ LS’BF"’(X)}.
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Theorem 3.1. If T € L(X), then the following equalities hold:
(i) ousbb(T) = ouspe- (T) U acco,(T).
(11) CT]Sbb(T) = Olsbf+ (T) U accog (T)
(111) Obb (T) = Opw (T) U ace U(T)

Proof. The proof of the equalities (i), (iii) may be found in [6] and [7]. To show
the equality (ii), we observe first that

(7) osbe+ (1) C ova(T).

Indeed, if X\ ¢ 04(T), then, by Theorem 25, AI — Tj,,) is onto some n € N, hence
lower semi-Fredholm and

ind(M —T') = ind(M — Tjy,)) = a(M —Tipn)) > 0;

thus A ¢ Olsbf+ (T)

By Corollary 210} in order to show the inclusion oigpb(T") 2 oygpe+ (1) Uacc os(T)
we need only to prove that accos(T) C oisop(T). If A & o1506(T) = 0va(T), then
A — T is right Drazin invertible, and hence by Theorem 25, A — T is T is semi- B-
Fredholm with ¢(A —T') < oco. By Corollary 4.8 of [16] it then follows that A\ — T
is onto in a punctured disc centered at A; thus A ¢ accos(T).

To show the opposite inclusion oi5pp(T) C oigpe+ (T) U acc os(T'), suppose that
A ¢ o+ (T) Uaccog(T). Since A ¢ accos(T'), then T* has SVEP at A. Since
M — T is lower semi-B-Fredholm by Theorem 235l then A — T is right Drazin
invertible. By Corollary 210, then A ¢ 0.q(T) = o1s6b(T'), so the equality (ii) is
proved. O

A bounded operator T' € L(X) is said to satisfy Browder’s theorem if o (T) =
ob(T). Denote by oue— (T') the essential approximate point spectrum of T', defined
as the complement in C of the set of all X such that Al — T is upper semi-Fredholm
with ind T < 0. The operator T' € L(X) is said to satisfy a-Browder’s theorem if
ust— (T) = oup(T); see for instance [4].

According to [12], a bounded operator T' € L(X) is said to satisfy the generalized
Browder’s theorem if 0(T) \ obw(T) = 04(T), while T' € L(X) is said to satisfy the
generalized a-Browder’s theorem if o,(T) \ oyspe- (T) = o1a(T).

Note that in all the papers concerning generalized Browder’s theorems (see for
instance [7], [15], [I2], []]), there is no trace of the role of B-Browder spectra. Our
Corollary 210 shows that this is only apparent. In fact, by Corollary 210 we have:

generalized Browder’s theorem holds for T' < o (T) = opp(T),
while
generalized a-Browder’s theorem holds for T' < oygpi— (T') = ousvb(T)-

Browder’s theorem may be characterized by localized SVEP: Browder’s theorem
(resp. generalized Browder’s theorem) holds for T if and only if 7" has SVEP at
every A ¢ ow(T) ([3]) (resp. T has SVEP at every A ¢ oun(T), see [7]), while
a-Browder’s theorem (resp. generalized a-Browder’s theorem) holds for T' if and
only if T" has SVEP at every A ¢ ou-(T) ([4]) (resp. T has SVEP at every
A ¢ oauene- (T), see([6]). The inclusions opy (T) C 0w (T) and oy (T) C ousni- (T)
immediately entail that the generalized Browder’s theorem implies Browder’s the-
orem, and, analogously, the generalized a-Browder’s theorem implies a-Browder’s
theorem. The main result of a very recent paper [§] proves that Browder’s theorem
and the generalized Browder’s theorem (respectively, a-Browder’s theorem and the



2846 PIETRO AIENA, MARIA T. BIONDI, AND CARLOS CARPINTERO

generalized a-Browder’s theorem) are equivalent. These results may be shown in a
few lines as follows:

Theorem 3.2. For every T € L(X) the following equivalences hold:
(1) O'W(T) = O’b(T) 4 O'bW(T) = O’bb(T).
(11) Ousf— (T) = Oub (T) < Ousbf- (T) = Ousbb (T)

Proof. (i) We have only to show the implication =. Assume that o (T") = o, (7).
Clearly, obw(T) C op(T) for all T € L(X). To show the opposite inclusion,
assume that A\g € opw(T), i.e. that \gI — T is B-Weyl. By [I3| Corollary 3.2],
then there exists an open disc D such that AI — T is Weyl and hence Browder for
all A € D\ {A\o}. Since p(AI —T) = g(AI —T) < oo, then both T and T* have
SVEP at every A € D\ {A\¢}, and hence both T' and T* have SVEP at A\o. By
Theorem 28] then A\gI — T is Drazin invertible, or equivalently Ag ¢ o, (7). Hence
O'bW(T) = O'bb(T).

(ii) Also here it suffices to prove the implication =. Assume that o (T) =
oub(T). Clearly, ougpe-(T) C ouse(T) for all T € L(X). Suppose that Ay ¢
Ousbi— (T). Then Aol — T € USBF~(X) and by [13, Corollary 3.2] there exists
an open disc D such that A\ — T is upper semi-Fredholm with index less than or
equal to 0 for all A € D\ {\g}. From assumption then AI —T is upper semi-Browder;
hence p(AI — T) < oco. Thus, T has SVEP at every A € D\ {\o} and hence T also
has SVEP at A\g. By Theorem 28] we then conclude that Ag ¢ 014(T) = ousbb(T),
so the equality oygps- () = ousbb(T') is proved. O

The following result shows that many of the spectra considered before coincide
whenever T or T has SVEP.

Theorem 3.3. Suppose that T € L(X). Then the following statements hold:
(i) If T has SVEP, then

(8) spi+ (') = o1sp(T) = 0a(T) = obw(T).
(ii) If T* has SVEP, then

(9) Tusb— (1) = dusbb (1) = obw(T) = oa(T).
(iii) If both T and T* have SVEP, then

(10) Tusbi— (1) = Oispi+ (1) = opw (T) = oa(T).

Proof. (i) By Theorem Bl and Corollary 210l we have
Oispi+ (1) € o1sb6(T) = 0va(T) € 0a(T).

We show now that oq(T") C oygpe+ (). Assume that A € ogpe+ (T7). We may assume
A = 0. Since T is lower semi-B-Fredholm and since T* has SVEP, in particular 7"
has SVEP at 0, by Theorem then T is right Drazin invertible or, equivalently,
lower semi-B-Browder. Therefore there exists n € N such that 77, is lower semi-
Fredholm and ¢(7},)) < co. By Theorem 3.4 of [I] it then follows that ind 7},; < 0.
On the other hand, since A\ ¢ oygp¢+(7), we also have ind Tj,,; > 0 from which we
obtain ind 7},,; = 0. This implies, again by Theorem 3.4 of [1], that also p(Tf,)) < oo,
so that T, is Browder and hence 7' is B-Browder. By part (iii) of Theorem
then T' is Drazin invertible, so 0 ¢ 0q(7T), as desired. Finally, since T has SVEP by
which the T satisfies the generalized Browder’s theorem, we have by (T') = 04(T)
and the equalities () are proved.
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(ii) The inclusion oygps—(T") € ushb(T) = 01a(T) € oa(T') holds for every T' €
L(X) by Theorem Bl and Corollary

We show that o4(T) C oygpe- (T'). Suppose that A € oygpe- (T') and assume that
A = 0. Since T is upper semi-B-Fredholm, then there exists n € N such that T,
is upper semi-Fredholm. The restriction Tj,) := T'|T™(X) has SVEP, in particular
has SVEP at 0 and hence, see Remark 22 p(T},) < oo. By Theorem 3.4 of [1] it
then follows that ind 7},) < 0. On the other hand, since A ¢ 04,6+ (T'), we also have
ind T},) > 0 from which we obtain ind 7},,; = 0. This implies, again by Theorem 3.4
of [1], that also ¢(7},)) < oo, so that T, is Browder and hence T' is B-Browder.
By part (iii) of Theorem [2Z9] then T is Drazin invertible, so 0 ¢ o4(T), as desired.
Finally, since T has SVEP, then T satisfies the generalized Browder’s theorem, so
O'bW(T) = O'd(T>.

(iii) Clear from parts (i), (ii). O

REFERENCES

[1] P. Aiena. Fredholm and local spectral theory, with applications to multipliers. Kluwer Acad.
Publishers (2004). MR2070395 (2005e:47001)
[2] P. Aiena. Quasi-Fredholm operators and localized SVEP. Acta Sci. Math. (Szeged) 73,
(2007), nos. 1-2, 251-263. MR2339864
[3] P. Aiena, M. T. Biondi. Browder’s theorems through localized SVEP. Mediterranean Jour.
of Math. 2, (2005), 137-151. MR2184191/|{(2006h:47003)
[4] P. Aiena, C. Carpintero, E. Rosas. Some characterizations of operators satisfying
a-Browder’s theorem. J. Math. Anal. Appl. 311, (2005), 530-544. MR2168416(2006e:47005)
[5] P. Aiena, M. L. Colasante, M. Gonzélez. Operators which have a closed quasi-nilpotent part,
Proc. Amer. Math. Soc. 130, (9) (2002), 2701-2710. MR 1900878 (2003g:47008)
[6] P. Aiena, T. L. Miller. On generalized a-Browder’s theorem. Studia Math. 180, (2007), no.
3, 285-300. MR2314082
[7] P. Aiena, O. Garcia. Generalized Browder’s theorem and SVEP. Mediterranean Jour. of
Math. 4, (2007), no. 2, 215-228. MR2340481
[8] M. Amouch, H. Zguitti. On the equivalence of Browder’s and generalized Browder’s theorem.
Glasgow Math. Jour. 48, (2006), 179-185. MR2224938(2007a:47002)
[9] M. Berkani. On a class of quasi-Fredholm operators. Int. Equa. Oper. Theory 34 (1), (1999),
244-249. MR1694711|(2000d:47023)
[10] M. Berkani. Restriction of an operator to the range of its powers, Studia Math. 140 (2),
(2000), 163-175. MR1784630 (2001g:47021)
[11] M. Berkani. Indez of B-Fredholm operators and generalization of a Weyl theorem, Proc.
Amer. Math. Soc. 130, (2002), no. 6, 1717-1723. MR1887019| (2002k:47028)
[12] M. Berkani, J. J. Koliha. Weyl type theorems for bounded linear operators, Acta Sci. Math.
(Szeged) 69, (2003), nos. 1-2, 359-376. MR1991673|/(2004c:47005)
[13] M. Berkani, M. Sarih. On semi B-Fredholm operators, Glasgow Math. J. 43, (2001), 457-465.
MR1878588 (2002j:47017)
[14] M. P. Drazin. Pseudo-inverses in associative rings and semigroups. Amer. Math. Monthly
65, (1958), 506-514. MR0098762 (20:5217)
[15] B. P. Duggal. SVEP and generalized Weyl’s theorem. (2006), Mediterranean Jour. of Math.
4, (2007), no. 3, 309-320. MR2349890
[16] S. Grabiner. Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34,
(1982), 317-337. MRI651274 (84a:47003)
[17] H. Heuser. Functional Analysis, John Wiley & Sons, Chichester, 1982. MR0640429
(83m:46001)
[18] J. J. Koliha. Isolated spectral points, Proc. Amer. Math. Soc. 124, (1996), 3417-3424.
MR1342031/(97a:46057)
[19] D. C. Lay. Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184,
(1969/1970), 197-214. MR0259644(41:4279)


http://www.ams.org/mathscinet-getitem?mr=2070395
http://www.ams.org/mathscinet-getitem?mr=2070395
http://www.ams.org/mathscinet-getitem?mr=2339864
http://www.ams.org/mathscinet-getitem?mr=2184191
http://www.ams.org/mathscinet-getitem?mr=2184191
http://www.ams.org/mathscinet-getitem?mr=2168416
http://www.ams.org/mathscinet-getitem?mr=2168416
http://www.ams.org/mathscinet-getitem?mr=1900878
http://www.ams.org/mathscinet-getitem?mr=1900878
http://www.ams.org/mathscinet-getitem?mr=2314082
http://www.ams.org/mathscinet-getitem?mr=2340481
http://www.ams.org/mathscinet-getitem?mr=2224938
http://www.ams.org/mathscinet-getitem?mr=2224938
http://www.ams.org/mathscinet-getitem?mr=1694711
http://www.ams.org/mathscinet-getitem?mr=1694711
http://www.ams.org/mathscinet-getitem?mr=1784630
http://www.ams.org/mathscinet-getitem?mr=1784630
http://www.ams.org/mathscinet-getitem?mr=1887019
http://www.ams.org/mathscinet-getitem?mr=1887019
http://www.ams.org/mathscinet-getitem?mr=1991673
http://www.ams.org/mathscinet-getitem?mr=1991673
http://www.ams.org/mathscinet-getitem?mr=1878588
http://www.ams.org/mathscinet-getitem?mr=1878588
http://www.ams.org/mathscinet-getitem?mr=0098762
http://www.ams.org/mathscinet-getitem?mr=0098762
http://www.ams.org/mathscinet-getitem?mr=2349890
http://www.ams.org/mathscinet-getitem?mr=651274
http://www.ams.org/mathscinet-getitem?mr=651274
http://www.ams.org/mathscinet-getitem?mr=0640429
http://www.ams.org/mathscinet-getitem?mr=0640429
http://www.ams.org/mathscinet-getitem?mr=1342031
http://www.ams.org/mathscinet-getitem?mr=1342031
http://www.ams.org/mathscinet-getitem?mr=0259644
http://www.ams.org/mathscinet-getitem?mr=0259644

2848 PIETRO AIENA, MARIA T. BIONDI, AND CARLOS CARPINTERO

[20] K. B. Laursen, M. M. Neumann. An introduction to local spectral theory, The Clarendon
Press, Oxford University Press, New York, 2000. MR1747914//(2001k:47002)

[21] M. Mbekhta, V. Miiller. On the aziomatic theory of the spectrum. II. Studia Math. 119,
(1996), 129-147. MR1391472 |(97c:47005)

DIPARTIMENTO DI METODI E MODELLI MATEMATICI, FACOLTA DI INGEGNERIA, UNIVERSITA DI
PALERMO, VIALE DELLE SCIENZE, 1-90128 PALERMO, ITALY
E-mail address: paiena@unipa.it

DEPARTAMENTO DE MATEMATICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD UCLA DE BAR-
QUISIMETO, VENEZUELA
E-mail address: mtbiondi@hotmail.com

DEPARTAMENTO DE MATEMATICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DE ORIENTE,
CUMANA, VENEZUELA
E-mail address: ccarpi@sucre.edu.udo.ve


http://www.ams.org/mathscinet-getitem?mr=1747914
http://www.ams.org/mathscinet-getitem?mr=1747914
http://www.ams.org/mathscinet-getitem?mr=1391472
http://www.ams.org/mathscinet-getitem?mr=1391472

1.3. ESPECTROS B-BROWDER Y LA SVEP LOCAL

38



Rendiconti del Circolo Matematico di Palermo 57, 241 —255 (2008)
DOI: 10.1007/s12215-008-0017-4

Carlos R. Carpintero - Orlando Garcia -
Ennis R. Rosas- Jose E. Sanabria

B-Browder spectra and localized SVEP

Received: May 3, 2008 / Accepted: May 14, 200&-Springer-Verlag 2008

Abstract. In this paper we study the relationships between the B-Browder
spectra and some other spectra originating from Fredholm theory and B-
Fredholm theory. This study is done by using the localized single valued ex-
tension property. In particular, we shall see that many spectra coincide in the
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1 Introduction and terminology
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class of operators has been studied in [5] by using methods of local spectral
theory, in particular these operators have been characterized by means of a lo-
calized version of the so-called single-valued extension property (SVEP). In
this paper we extend these results to the class of semi B-Browder operators,
defined according the B-Fredholm theory introduced by Berkani and coau-
thors ([9], [10], [11]). The characterizations of semi B-Browder operators in
terms of localized SVEP are then used for obtaining many relationships be-
tween some spectra originating from Fredholm theory and B-Fredholm the-
ory. In particular, we show that if an operafbyor its dualT *, satisfies SVEP

then many of these spectra coincide. We Iso consider the special case where
the boundary of the spectrum coincide with the approximate point spectrum,
or with the surjectivity spectrum.

Throughout this papdr(X) will denote the algebra of all bounded linear
operators acting on an infinite- dimensional complex Banach siader
T € L(X) we denote byN(T) the null space of, by o(T) = dimN(T) the
nullity of T, by R(T)=T(X) the range off and byf(T) = codimR(T) =
dimX/R(T) the defect off . Theascent p= p(T) of an operatof is defined
as the smallest non-negative integesuch thalN(TP) = N(TP+1). If such an
integer does not exist, we pptT) = . Analogously, thedescent g= q(T)
is defined as the smallest non-negative integeuch thaR(T9) = R(T4+1),
and if such an integer does not exist, we g(it) = c. An operatofT € L(X)
is said to beFredholm(resp.upper semi -Fredholiower semi-Fredholiy
if o(T), B(T) are both finite (respgR(T) closed andx(T) < oo, B(T) < ).

T is said to besemi-Fredholmif T is either an upper semi-Fredholm or a
lower semi-Fredholm operator. Other two important classes of operators in
Fredholm theory are the classes of semi-Browder operators. These classes are
defined as followI € L(X) is said to beéBrowder(resp.upper semi-Browder

lower semi-Browderif T is a Fredholm (resp. upper semi-Fredholm, lower
semi-Fredholm) and botp(T), q(T) are finite (respp(T) < o0, q(T) < ).

Givenn € N, we denote byT, the restriction ofT € L(X) on the sub-
spaceR(T") = T"(X). According Berkani ([10] and [11])T is said to be
semiB-Fredholm(resp.B-Fredholm upper semi B-Fredholmower semi B-
Fredholm, if for some integen > 0 the rangdR(T") is closed andy,, viewed
as a operator from the spaB¢T") in to itself, is a semi-Fredholm operator
(resp. Fredholm, upper semi-Fredholm, lower semi-Fredholm) . Analogously,
T € L(X) is said to beB-Browder(resp.,upper semi B-Browdetower semi
B-Browde), if for some integein > 0 the rangeR(T") is closed andl, is a
Browder operator (resp., upper semi-Browder, lower semi -Browder). Define

AT):={neN:m>nmeN=T"(X)N N(T) CT™(X)NN(T)}.

The degree of stable iteratiois defined as did) :=infA(T) if A(T) #0,
while dis(T) = if A(T) =0.
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Definition 1 T € L(X) is said to bejuasi-Fredholm of degree, i there exists
d € N such that:

(@) digT) =d,

(b) T"(X) is a closed subspace X¥ffor eachn > d,

(¢) T(X) +N(T9) is a closed subspace Xt

For further informations on quasi-Fredholm operators we refer to [10] and
[11].

2 Ascent and descent of restrictions

This first section leads with some preliminary results concerning the ascent
and the descent of restrictions Bfto the ranges of its power. We start first
with the following useful lemma ([1, Lemma 3.2]):

Lemma 1l Let T be alinear operator on a vector space X. Thea-p(T) <
m< oo if and only if N(T") N T™(X) = {0} for all n € N..

Suppose now thak € L(X) and putT, := T|T"(X) for alln € N. Then
N(Thi1) = N(T)NT™(X) CN(T)NT"(X) =N(Ty) forallne N, (1)
and
R(T") = R(T™™) = R(Ty) for allmn € N. (2)

Lemma 2 Let T be a linear operator on a vector space X. Then the following
statements are equivalent:

(i) p(T) < oo;
(ii) there exists k N such that Tis injective;
(iii) there exists ke N such that §Ty) < oo.
Proof. (i) < (i) If p:=p(T) < o, by Lemma 1, theN(Tp) = N(T) N
TP(X) = {0} . Conversely, suppose thakT,) = {0}, for somek € N. If
x € N(TK+1) thenT (Tkx) = 0, so
T*x e N(T)NTX(X) = N(Ti) = {0}.

Hencex € N(TX). This shows thal(T**1) C N(TX). The opposite inclusion
is true for every operator, thid(T 1) = N(TK) and consequentlg(T) < k.

(i) « (iii) The implication (ii) = (iii) is obvious. To show the opposite
implication, suppose that := p(Tx) < «. By Lemma 1 and by using the
equality (2) we have:

{0} = N(Ti) NR(TK") = (N(T)NR(T*)) NR(Tk") = N(T) NR(Tc")
= N(T)NR(TY") = N(Ty.0),



244 C. Carpintero et al.

so that the equivalenge- (iii) is proved. O
A dual result holds for the descent:

Lemma 3 Let T be alinear operator on a vector space X. Then the following
statements are equivalent:

(1) q(T) < oo;
(ii) there exists k N such that [ is onto;
(iii) there exists ke N such that §Ty) < .

Proof. (i) < (ii) Suppose that):= q(T) < . Then
TAX) = TH(X) = T(TUX)) = R(Ty).
henceTy is onto. Conversely, i is onto for some € N then
THX) = T(TX(X)) = R(T) = TA(X),

thusq(T) < k.

The implication (ii)=- (iii) is obvious. We show (iii)= (i). Suppose that
v :=q(Tk) < o for somek € N. ThenT¥(X) = Te"+1(X), i.e. T*V(X) =
TVHHL(X), hencey(T) < k+v. O

Remark 1As observed in the proof of Lemma 2= p(T) < o thenN(T,) =
{0} and from the inclusion (1) it is obvious thBk(T;) = {0} for all j > p.
Conversely, ifN(Tx) = {0} for somek € N thenp(T) < o and p(T) < k.
Hence, ifp(T) < o then

>
<

p(T) =inf{k € N : T is injective}.

Analogously, ifq:= q(T) < o thenT; is onto for allj > g. Conversely, ifT,
is onto for somék € N thenq(T) <k, so that

q(T) =inf{k € N : T is ontg}.

Definition 2 T € L(X), X a Banach space, is said to leét Drazin invertible
if p:=p(T) < andTP+1(X) is closed, whileT € L(X) is said to beright
Drazin invertibleif q:=q(T) < 0 andT9(X) is closed.

It should be noted that the conditigr= q(T) < c does not entails thdtd(X)

is closed, see Example 5 of [15]. Clearly,e L(X) is both right and left
Drazin invertible if and only ifT is Drazin invertible. In fact, if O< p :=

p(T) = q(T) thenTP(X) = TP+L(X) is the kernel of the spectral projection
Py associated with the spectral géi}, see [13, Prop. 50.2]. Later we shall
see that left Drazin invertible operator, as well as every right Drazin invertible
operator, is semi B-Fredholm.
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Lemma4 If T € L(X) and p= p(T) < « then the following statements are
equivalent:

(i) There exists a natural  p+ 1 such that T'(X) is closed,;
(i) T"(X) is closed for all n> p.

Proof. Definec/(T) := dim(N(T'")/N(T'*1). Clearly,p = p(T) < « entails
thatc{(T) =0 for alli > p, sok(T) :=¢/(T) — ¢/ (T) =0foralli > p. The
equivalence then easily follows from [15, Lemma 12]. O

Recall that a bounded operatére L(X) on a Banach space is called
bounded belowf T is injective and has closed range. The concept of left
(respectively, right) Drazin invertibility may be view as the topological coun-
terpart of the property of having finite ascent (respectively, finite descent). In
fact we have:

Theorem 1 If T € L(X) then we have:

(i) T is left Drazin invertible if and only if there exists aekN such that
TK(X) is closed and {Jis bounded below. In this casé (X) is closed and T
is bounded below for all naturals> k.

(ii) T is right Drazin invertible if and only if there exists aklN such that
TK(X) is closed and Jis onto. In this case T(X) is closed and Jis onto for
all naturals j> k.

(iii) T is Drazin invertible if and only if there exists ackN such that
TK(X) is closed and {Jis invertible. In this case MX) is closed and Jis
invertible for all naturals j> k.

Proof. (i) Supposep := p(T) < o and thatTP*1(X) closed. Ther, is in-
jective andR(Tp) = TPT1(X) is closed. Conversely, ify is bounded below
for somek € N then, by Lemma 2p := p(T) < c and by Remark 1 we have
p <k, and hencg+ 1 < k+ 1. SinceR(T) = T*1(X) is closed then, by
Lemma 4,TP+1(X) is closed and consequentflyis left Drazin invertible.
The last assertion is clear, by RemarKis injective for allj > k andT/(X)

is closed, again by Lemma 4.

(if) Suppose thatj:= q(T) < « andT9(X) is closed theR(Tg) = T4 (X) =
T9(X), soT is onto. Conversely, suppose tifdt(X) is closed andy is onto
for somek € N. Then, by Lemma 2q =q(T) < © andg+ 1 < k+1. By
Lemma 4 thenT9(X) is closed and hence is right Drazin invertible. By
Lemma 4 therlT1(X) is closed for allj > k, and by Remark Tj is onto for
all j >k

(iii) Clear. ad

Also here, ifT is left Drazin invertible then

p(T) = inf{k € N: T¥(X) is closed and is bounded belo,
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while, if T is right Drazin invertible then
q(T) = inf{k e N: T(X) is closed and is onta}.

Observe that also the property of being quasi-Fredholm may be described
in terms of restrictions. Recall thaite L(X) is said to besemi-regulaif T (X)
is closed andN(T) C T"(X) for allne N.

Theorem 2 T € L(X) is quasi-Fredholm if and only if the existsskN such
that T¥(X) is closed and Jis semi-regular. In this case; Ts semi-regular for
all j > k.

Proof. The equivalence is due to Berkani [10, Proposition 3.2]. To prove the
last statement, suppose thiatis semi-regular for somk € N. For all j > k
then

N(Tj) € N(Ty) CR(T) = T¥™L(X) forallne N.

In particular,
N(Tj) € TN (X) = T (X) = R(TP),

for all n € N. Moreover, sincd,” is semi-regular for alh € N, see Corollary
[1, Corollary 1.17], it then follows thalR(T;) is closed for allj > k. HenceT;
is semi-regular. ad
Clearly, every semi-regular operator is quasi-Fredholm. It should be noted
that both Theorem 1 and Theorem 2 provide a very clear picture of the rela-
tionship between the concepts of quasi-Fredholm operators and Drazin (left,
right) invertibility: every bounded below operator, as well as every surjective
operator, is semi-regular, so from Theorem 2 and Theorem 1 we easily deduce
that every left Drazin invertible operator, as well as every right Drazin invert-
ible operator is quasi-Fredholm. Actually, every semi B-Fredholm operator is
quasi-Fredholm, see Proposition 2.5 of [11].

3 SVEP

We now define a basic property, introduced by Finch [12], and later studied
extensively by Aiena and coauthors ([1],[3], [4], [5] and [7]). A bounded oper-
atorT € L(X) on a complex Banach spaXeis said to havehe single valued
extension propertgt A € C (abbreviated, SVEP ab), if for every open disc
D,, € C centered alp the only analytic functiorf : D, — X which satisfies
the equation

(AI=T)f(2)=0 forallA €Dy,

is the functionf = 0 on D, . The operatofT is said to have SVEP iT
has the SVEP at every poiate C. Evidently, T € L(X) has SVEP at every
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point of the resolvenp(T) := C\ o(T). Moreover, from the identity theo-
rem for analytic functions it is easily seen thkathas SVEP at every point

of the boundary o (T) of the spectrum. In particulal; has SVEP at every
isolated point of the spectrum. Note that the localized SVEP is inherited by
the restriction to closed invariant subspaces, i.&. ifas SVEP aflo andM

is a closedr -invariant subspace of thenT|M has SVEP alg. Moreover, if

' (o(T)) denotes the set of all complex-valued functions which are locally
analytic on an open set containiogT ), for everyf € J#(o(T)) thenf(T)

has the SVEP, see [1, Theorem 2.40]. We have

P(Al = T) <o =T has SVEP al, 3)

and dually
gq(Al = T) <o = T" has SVEP al, 4)

see [1, Theorem 3.8].

Remark 2The implications (3), (4), are actually equivalences it a quasi-
Fredholm operator, see [3].

The class oB-Browder operators may be described in terms of SVEP:

Theorem 3 Let T € L(X). Then the following properties are equivalent:

(i) Aol —T is left Drazin invertible;

(ii) Apl —T is upper semi B-Browder;

(iii) Aol — T is quasi-Fredholm operator having finite ascent;
(iv) Aol —T is quasi-Fredholm and T has the SVEFat

Proof. Clearly, T has the SVEP akq if and only if Aol — T has the SVEP at
0, so in the proof we can suppo&g= 0.

(i) = (ii) Clearly, if T is left Drazin invertible then, by Theorem 1, there
existsn € N such thaff"(X) is closed,T, is bounded below, and hence upper
semi-Browder.

(i) = (iii) As already observedr is quasi-Fredholm. Moreover, sindg
is upper semi-Browder for somec N then p(T,) < o, and this entails, by
Lemma 2, thap(T) < co.

(iiiy = (i) If T quasi-Fredholm ang:= p(T) < « then, by Remark 1T,
is injective for alln > p. Moreover, ifd is the degree of thenT"(X) is closed
for all n > d, soT, is bounded below fon sufficiently large. By Theorem 1
thenT is left Drazin invertible.

(iif) < (iv) This is clear by Remark 2. O

The equivalence (i§= (ii) of Theorem 3 has been proved in [4] (see also
[10]) . Our proof is much more simple.
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Theorem 4 Let T € L(X) Then the following properties are equivalent:
() Aol —T is right Drazin invertible;
(>ii) Aol —T is lower semi B-Browder;
(i) Aol — T is quasi-Fredholm having finite descent;
(iv) Aol —T is quasi-Fredholm and Thas SVEP aky.

Proof. Also here we can assume thiat= 0.

(i) = (ii) Clearly, if T is right Drazin invertible then, by Theorem 1, there
existsn € N such thafT"(X) is closed,T, is onto, and hence a lower semi-
Browder operator,

(ii) = (iii) Clearly, T is quasi-Fredholm. Moreover, sinGgis lower semi-
Browder for somen € N thenq(Ty) < «, and by Lemma 3 this is equivalent
to saying thag(T) < .

(iii) = (i) Suppose thaT is quasi-Fredholm and:= q(T) < «. As ob-
served in Remark 1 thef, is onto for alln > q. As T"(X) is closed for all
n > d, whered is the degree of . By Theorem 1 it then follows that is right
Drazin invertible.

(iii) < (iv) This follows from Remark 2. ad

Also the equivalence (i} (ii) of Theorem 4 has been observed in [10]
and proved by using different methods in [4]. The proof given here is much
more simple. It should be noted that for Hilbert spaces operators instead of
considering the dual* of T is more appropriate to consider the Hilbert ad-
joint T’. Since, as observed in [2],;* has SVEP af if and only if T has
SVEP ath , in the case of Hilbert space operators the duabf T may be
replaced byT”’.

Corollary 1 Let T € L(X). Then the following properties are equivalent:
(i) Aol —T is Drazin invertible ;
(i) Aol — T is B-Browder;
(iii) Aol — T is quasi-Fredholm and both T ,“Thave the SVEP ak,.

4 Some Relationships between spectra

The classes of operators defined in the previous section motivate the defini-
tions of several spectra. Thper semi-Browder spectruimdefined by

ow(T):={A € C: Al —T is not upper semi-Browdér
Thelower semi-Browder spectruia defined by

op(T):={A €C: Al —T is not lower semi-Browder.
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From the classical Fredholm theory we haxg(T) = o (T*) andoj(T) =
oub(T*). The B-Fredholm spectrum is by

ovi(T) ={A € C: Al —T is not B-Fredholm,
theupper B-Browder spectrunspectrum ofT € L(X) is defined by
ounb(T) = {A € C: Al —T is not upper B-Browdéy,
thelower B-Browder spectrurspectrum is defined by
oipb(T) ={A € C: Al —T is not lower B-Browde},
while theB-Browder spectruns defined, by
obb(T) ={A € C: Al —T is not B-Browde}.

Clearly, opp(T) = oupb(T) U oibn(T). An obvious consequence of Corol-
lary 1 is thatopp(T) coincides with theDrazin spectrunoy(T) of T. More-
over, by Theorem 3gypn(T) coincides withoig(T), theleft Drazin spectrum
of T, and by Theorem 4i,,(T) = 04(T), theright Drazin spectrunof T.
Thequasi-Fredholm spectrumf T € L(X) is defined by

oq(T) = {A € C: Al —T is not quasi-Fredholnj.
Hence,
0qf(T) € obf(T) € obn(T). (5)

Note that all the spectra in (5) may be empty. This is the case where the spec-
trum of T is a finite set of poles of the resolvent (i’e.is algebraic, see [1,
Theorem 3.83]. In this casey,(T) = oy4(T) is obviously empty. Further-
more, all the spectra in (5) are compact subsets,afee [10, Corollary 3.8].

In the sequel by K we denote the boundary &f C C.

Theorem 5 If T € L(X) we have
(i) dopn(T) S ot (T),
(ii If If opt(T) is connected thety,,(T) is connected,
Proof. (i) Obviously, we can assume thag,(T) is not empty. Suppose that

A € dopp(T). We claim that botT andT* have SVEP al. Let f : D; — X
a analytic function on the open difig, centered at., such that

(ul —=T)f(u)=0 foreachu € D,.

Let ppo(T) := C\ opp(T). ThenD, Nppp(T) # 0 andul — T is a B-
Browder operator for allk € D, N ppp(T), SO by Corollary 1, botfi andT*
have SVEP at every € D, N ppp(T). On the other hand), N ppp(T) is open
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and for eachu € D; Nppo(T) there exists an open did, C Dy Nppp(T) cen-
tered afu such thatf : D, — X is analytic and the equatigm! —T)f(n)=0
holds for alln € D,,. SinceT has the SVEP af, it then follows thatf =
0inD,. This implies, via the identity theorem for analytic functions, that
f =0inD,. Thus,T has the SVEP at. In similar way, T* has the SVEP
atA. Now, if A ¢ o4(T), thenAl —T is quasi-Fredholm and the SVEP fbr
andT* atA implies thatA ¢ opp(T), a contradiction.

(i) Assume thatops(T) is connected andpy(T) is not connected. Sup-
pose, for instancepy(T) = Q21 U2y, whereQ, Q, are two closed non-empty
set such thaf2; N Q = 0. Sinceopi(T) C opp(T) and oue(T) is connected
then ous(T) is contained either iM2; or Q5. Supposeosyi(T) C 24. The set
poi(T) is open and hence may be decomposed in maximal open connected
components. EvidenthQ, is contained in the unbounded componghif
Pof(T) = C\ oui(T) which intersects the resolvept(T) := C\ o(T). By
Theorem 3.3 and Theorem 3.4 of [8] bothand T* have SVEP either at
every point or at no point of a component @f;(T). SinceT andT* have
SVEP at the points of the resolvent, it then follows thandT* have SVEP
at all points ofQ2. In particular,T andT* have SVEP at every € Q,. But
A ¢ ouni(T), hencedl — T is quasi-Fredholm. By Corollary 1 it then follows
thatAl — T is B-Browder, a contradiction, sind@, C opp(T). O

A bounded operatoF € L(X) is said to be &\Veyl operatoiif T is a Fred-
holm operator having index @; € L(X) is said to beupper semi-Weyif T
upper semi-Fredholm with index ifd< 0; T is said to bdower semi-Weyif
T is lower semi-Fredholm with in@ > 0. TheWeyl spectrunand is defined,
by

ow(T):={A € C: Al —T is not Weyl},

theupper semi-Weyl spectruamdlower semi-Weyl spectruare defined, re-
spectively, by

ouw(T) :={A € C: Al —T is not upper semi-Weyl

and
ow(T) :={A € C: Al —T is not lower semi-Wey.

It is known from the classical Fredholm theory that,(T) = ow(T*) and
ow(T) = oun(T").

A bounded operatof € L(X) is said to beB-Weyl(respectivelyupper
semi B-Weyllower semi B-Wey| if for some integen > 0 the ranger "(X)
is closed and;, is Weyl (respectively, upper semi-Weyl, lower semi-Weyl).

TheB-Weyl spectrunis defined by

obw(T) :={A € C: Al — T is not B-Weyl};
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theupper semi B-Weyl spectruamd thelower semi B-Weyl spectruare de-
fined, respectively, by

oubw(T) = {A € C: Al —T is not upper semi B-Weyl

and
oibw(T) = {4 € C: Al —T is not lower semi B-We}.

Clearly, opw(T) = oupw(T) U oibw(T). For an operatof € L(X), we set
E(T):={A €C: T does not have SVEP & }.

Trivially, Z(T) is empty whenevef has the SVEP. Moreover, the s&{T)
is an open set contained in interior of the spectruri of

Theorem 6 Let T € L(X). Then we have:

ounb(T) = Gqf(T) UE(T) = ouw(T)UE(T) (6)
and

Oibb(T) = ogr(T) U E(T") =opw(T)UE(TY) (7
Moreover,

Obb(T) = obw(T)UE(T) = opw(T)UE(T™). (8)

Proof. We show the first equality in (6). Suppose that oy(T)U Z(T).
ThenA € o4 (T) or T does not have SVEP at In the first casé € oypn(T),
sinceogy(T) C oubp(T). Also the second case entails that oypp(T), oth-
erwise by Lemma 2 we would hay@#Al — T) < o and hencél has SVEP
atA. Thereforeog(T)UZ(T) C oupn(T). Conversely, ifA ¢ oqi(T)UZ(T)
then, by Theorem 311 — T is upper semi-Browder, sb ¢ oypn(T).

To show the second equality in (6), observe first thaf(T) C oupw(T) U
E(T), sinceoy(T) C ouow(T). LetA & oupn(T). ThenAl —T is upper semi
B-Browder, in particular upper semi B-Weyl, 40¢ o,pw(T). Clearly,T has
SVEP, since by Lemma@(Al —T) < o, hencel ¢ Z(T). Hence both equal-
ities in (6) are proved.

The equalities in (7) can be proved by means of similar arguments, just use
Lemma 3. Analogously, the equalities in (8) may be proved by using both
Lemma 2 and Lemma 3. O

Corollary 2 Let T € L(X). Then we have:
() If T has the SVEP then

c7qf(T) = Oubw(T) = oubn(T), 9

and
Sbow(T) = 0ub(T) = Oibb(T) = Cibw(T). (10)
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(i) If T* has the SVEP then

0gi(T) = Oibw(T) = OIbb(T), (12)

and
Obw(T) = bb(T) = Suon(T) = Subw(T). (12)

(i) If both T, T have SVEP then

0gf(T) = oubb(T) = Oibb(T) = obp(T)
= 0bw(T) = Obw(T) = oupbw(T)-

Proof. (i) The equalities in (9) are clear from Theorem 6. Also the first equal-
ity in (10) is clear from Theorem 6. We show the equabty(T) = oipp(T).
Clearly,oipn(T) € opp(T). Conversely, ik ¢ opp(T) theng(Al —T) < o, by
Lemma 3. Butll — T is quasi-Fredholm and the SVEP&aimplies by The-
orem 3 thatAl — T is upper semi B-Browder, henggAl — T) < oo, so that

A ¢ opp(T). Therefore,opn(T) = oipp(T). To show the equalityips(T) =
oibw(T) we need only to prove thatpp(T) C opw(T). If A ¢ oipw(T) then

Al =T is semi B-Fredholm, hence quasi-Fredholm. By Theorem 3 the SVEP
of T atA implies thatAl — T is semi B-Browder, hencg ¢ ojpp(T).

(i) The equalities (11) and (12) can be proved in a similar way of part (i).
(iii) The equalities are consequence of part (i) and part (ii). a
Corollary 2 improves the results of Theorem 3.3 of [4].

Remark 3Since the SVEP foll (respectively, foiT *) implies thatf (T) (re-
spectively,f (T*) = f(T)*) has SVEP for alf € 7#(c(T)), then the equali-
ties established in Corollary 2 holds fo(T).

A bounded operatof € L(X) is said to satisfygeneralized a-Browder’s
theoremif the equalitycupw(T) = 01d(T) (= oubn(T)) holds. Note that gen-
eralized a-Browder’s theorem implies that the equalitigg(T) = o4(T) =
opp(T)) hold, namelyT satisfiesgeneralized Browder’s theorersee for in-
stance [6]. GeneralizeaBrowder’s theorem fofl is equivalent to so-called
a-Browder’s theorenfior T, which means that,,(T) coincides withoyw(T))
(see for a simple proof [4]). This implies the so-cal@awder’s theorenfor
T, namely the equality,(T) = ow(T) holds forT.

Theapproximate point spectruof T € L(X) is defined by

0a(T) :={A € C: A1 —T is not bounded beloy
the surjectivity spectrunof T is defined by

os(T):={A €C: Al —T is not ontg,
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theKato spectrunis defined by
ok(T):={A € C: Al —T is not semi-regulgr.
By Theorem 2 we have
0gf(T) C ok(T) C oa(T)Nos(T). (13)

In the sequel, the set of all accumulation point&of C will be denoted
by acaK. From the definition of localized SVEP it is easily seen tBaT ) C
accoy(T), and duallyz (T*) C accos(T).

Corollary 3 If T € L(X) then we have
0] Gubb(T) = Gqf(T) Uacc Ga(T).
(i) Cﬂbb(T) = Gqf(T) U accoS(T).
(i) obb(T) = ogf(T) Uacco(T).

Proof. (i) Clearly, by Theorem 6¢unn(T) € ogf(T) Uaccoa(T). To show the
opposite inclusion let ¢ oyt (T)Uacc oa(T). ThenAl —T is quasi-Fredholm
andT has SVEP ak, soAl —T is upper semi B-Browder, by Theorem 3, i.e.
A ¢ Gubb(T)-

(i) By Theorem 6, oppn(T) C og(T) U accos(T). Conversely, if
A ¢ oqi(T)Uaccos(T). ThenAl —T is quasi-Fredholm and@* has SVEP
atA, soAl —T is lower semi B-Browder, by Theorem 4, i ¢ oipp(T).

(i) This follows from part (i), part (i), and from the equalities
o(T) = 0a(T) Uos(T) andops(T) = Gunb(T) U Gion(T)- 0

Note that if acaos(T) = 0 thenoups(T) = ogi(T). The next two results
shows that this equality also holds whenewg(T) coincides with the bound-
ary the spectrundc(T) (generally,c4(T) containsdo(T), see [1, Theorem
2.42]).

Theorem 7 Let TeL(X) be an operator for whicks,(T)=do(T) Cacco(T).
Then

Gqf(T) = Oubb(T) = Oupw(T) = 0a(T) = ouwp(T) = ouw(T) = ok(T). (14)

Proof. The assumption entails that has SVEP. Indeedl has the SVEP
at every point of the boundary as well as at every painthich belongs to
the remaining part of the spectrum, sinte o,(T). Therefore the equalities
0gf(T) = oubb(T) = oubw(T) hold by Corollary 2.

We prove thatypp(T) = 0a(T). The inclusionoyps(T) C 04(T) is true for
every operator, since by Theorem 1 and Theorem 3 a bounded below operator
is upper semi B-Browder. Conversely, suppose thdtoypn(T). Thenil — T
is quasi-Fredholm and the SVEP faérentails, by Theorem 2.7 of [3] that
0a(T) does not cluster at. Clearly, A ¢ o4(T), otherwiseA would be an
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isolated point ofc,(T) = do(T), contradicting our assumption that every
A € do(T)is notisolated ino(T). Henceoy(T) C oupp(T), from which we
conclude thatiy(T) = oypp(T).
Evidently, 0a(T) C oun(T) holds for every operator. Now, 6t ¢ oyp(T).
ThenA ¢ oypp(T) and the SVEP® atA, again by Theorem 2.7 of [3], implies
that A ¢ accoa(T). Hence, by Corollary 34 ¢ oqt(T) = 0a(T). Therefore,
0a(T) = ou(T) . Finally, the SVEP off implies, by Remark 3, thaty,(T) =
ouw(T) and from the inclusions (13) we obtair(T) = ok(T) = 6a(T), so
the proof of the equalities (14) is complete. ad
Dually we have:

Theorem 8 Let T €L(X) be an operator for whicles(T)=do(T) Cacco(T).
Then

04t(T) = 0ibb(T) = Obw(T) = 05(T) = 01p(T) = ow(T) = ok(T).  (15)

Proof. The assumption entails th@t has SVEP. Indeedl has the SVEP
at every point of the boundado (T*) = do(T), as well as at every poirit
which belongs to the remaining partefT*), sinceiA ¢ os(T). Therefore the
equalitiesogt(T) = oib(T) = oibw(T) hold by Corollary 2.

We showoip,(T) = os(T). The inclusionoip,(T) C os(T) is clear for ev-
ery operator, since by Theorem 1 and Theorem 3 a surjective operator is lower
semi B-Browder. Conversely, suppose that o,pp(T). ThenAl —T is quasi-
Fredholm and the SVEP far* implies, by Theorem 2.11 of [3], thats(T)
does not cluster at. Clearly,A ¢ os(T), otherwiseA would be an isolated
point of o5(T) = do(T), contradicting the assumption thiate do(T) is not
isolated ino (T ). Henceos(T) C opp(T), and consequentlys(T) = Ojpp(T).
The inclusionos(T) C oip(T) holds for every operator. Lét ¢ ojp(T). Then
A ¢ opp(T) and the SVEP of * atA implies, always by Theorem 2.11 of [3],
thatA ¢ accos(T). Hence, by Corollary 3} ¢ o4(T) = os(T), so the equal-
ity os(T) = oip(T) is proved. Finally, the SVEP &f* implies, by Remark 3,
that

Oib(T) = oup(T") = oup(T") = ow (T)

and from the inclusions (13) we obtain
0qi(T) = ok(T) = os(T),

so the proof of the equalities (15) is complete. ad

Theorem 7 and Theorem 8 provide an useful tool for determining the var-
ious spectra above considered in the case whefd (X) is a non-invertible
isometry. Indeed, a non-invertible isomeiryhas SVEP, since its spectrum is
the unit disdD ando,(T) coincides with the boundary @, see [14, p. 80].
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Theorem 7 also applies to ti@esaro operator G, on the classical Hardy

spaceH,(ID), whereD is the open unit disc and< p < o, defined by

C f)(x)-—l/”(“)d forall f e Hp(D)andi €D
p _l 0 1_u u, p .

The spectrum of the operatGp is the closed disg;, centered ab with radius
£, see [16], an@ra(Cp) = IIp.
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Generalized Weyl’s theorems for polaroid operators

C. CARPINTERO, D. MUNOZ, E. ROSAS, O. GARCIA AND J. SANABRIA

ABSTRACT. In this paper we establish necessary and sufficient conditions on bounded linear oper-
ators for which generalized Weyl’s theorem, or generalized a-Weyl theorem, holds. We also consider
generalized Weyl’s theorems in the framework of polaroid operators and obtain improvements of
some results recently established in [20] and [29].

1. INTRODUCTION AND TERMINOLOGY

Throughout this paper L(X) denotes the algebra of all bounded linear opera-

tors acting on an infinite- dimensional complex Banach space X. For T' € L(X),
we denote by N(T') the null space of T'and by R(T") = T'(X) the range of 7. We
denote by a(T) := dim N(T') the nullity of T and by 3(T) := codim R(T) =
dimX/R(T) the defect of T. Other two classical quantities in operator theory
are the ascent p = p(T) of an operator T, defined as the smallest non-negative
integer p such that N(T?) = N(TP*!) (if such an integer does not exist, we put
p(T) = o0), and the descent ¢ = ¢(T'), defined as the smallest non-negative in-
teger ¢ such that R(TY9) = R(T?*!) (if such an integer does not exist, we put
¢(T) = o0). An operator T' € L(X) is said to be Fredholm (respectively, upper semi
-Fredholm, lower semi-Fredholm), if a(T), B(T) are both finite (respectively, R(T')
closed and o(T) < oo, B(T) < o0). T € L(X) is said to be semi-Fredholm if
T is either an upper semi-Fredholm or a lower semi-Fredholm operator. If T is
semi-Fredholm the index of T' defined by ind T' := «(T") — 8(T). Other two im-
portant classes of operators in Fredholm theory are the classes of semi-Browder
operators. These classes are defined as follows, T' € L(X) is said to be Browder
(resp. upper semi-Browder, lower semi-Browder) if T is a Fredholm (respectively,
upper semi-Fredholm, lower semi-Fredholm) and both p(T'), ¢(T') are finite (re-
spectively, p(T') < oo, ¢(T') < o0). A bounded operator T' € L(X) is said to be up-
per semi-Weyl (respectively, lower semi-Weyl) if T' is upper Fredholm operator (re-
spectively, lower semi-Fredholm) and index ind T" < 0 (respectively, ind 7" > 0).
T € L(X) is said to be Weyl if T is both upper and lower semi-Weyl, i.e. T is
a Fredholm operator having index 0. The Browder spectrum and the Weyl spec-
trum are defined, respectively, by o, (T") := {A € C : A\I — T is not Browder} and
ow(T) :=={X € C: Al — T is not Weyl}.

Since every Browder operator is Weyl then oy (T) C o,(T). Analogously,
The upper semi-Browder spectrum and the upper semi-Weyl spectrum are defined,
respectively, by o, (T) := {A € C : A — T is not upper semi-Browder}, and
ouw (T') := {X € C: AI — T is not upper semi-Weyl}.
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Given n € N, we denote by T;, the restriction of 7" € L(X) on the subspace
R(T™) = T"™(X). According [16] and [14], T is said to be semi B-Fredholm (re-
spectively, B-Fredholm, upper semi B-Fredholm, lower semi B-Fredholm), if for some
integer n > 0 the range R(T™) is closed and T,,, viewed as a operator from the
space R(T") into itself, is a semi-Fredholm operator (respectively, Fredholm, up-
per semi-Fredholm, lower semi-Fredholm) . Analogously, ' € L(X) is said to be
B-Browder (respectively, upper semi B-Browder, lower semi B-Browder), if for some
integer n > 0 the range R(T™) is closed and T, is a Browder operator (respec-
tively, upper semi-Browder, lower semi -Browder). If T;, is a semi-Fredholm op-
erator, it follows from ([14, Proposition 2.1]) that also 7}, is semi-Fredholm for
every m > n, and indT,, = indT,,. This enables us to define the index of semi
B-Fredholm operator 7" as the index of the semi-Fredholm operator T;,. Thus, a
bounded operator T' € L(X) is said to be a B-Weyl operator if T is a B-Fredholm
operator having index 0, T € L(X) is said to be upper semi B-Weyl if T' is upper
semi B-Fredholm with index ind 7" < 0, and 7 is said to be lower semi B-Weyl if T
is lower semi B-Fredholm with ind T' > 0. Note that if T" is B-Fredholm then also
T* is B-Fredholm with ind T* = —ind 7.

The classes of operators defined above motivate the definitions of several spec-
tra. The upper semi B-Browder spectrum is defined by oy, (1) := {A € C : A\ —
T is not upper semi B-Browder}. The lower semi B-Browder spectrum is defined by
owb(T) == {X € C : XI — T is not lower semi B-Browder}, while the B-Browder
spectrum is defined, by o, (T) = {X € C : AI — T is not B-Browder}. Clearly,
obb(T) = oupn(T) U owpn(T). The B-Weyl spectrum is defined, by oy, (T) := {\ €
C : AI — T is not B-Weyl}, the upper semi B-Weyl spectrum and lower semi B-Weyl
spectrum are defined, respectively, by oubw(T) = {A € C : AI — T is not up-
per semi B-Weyl}, and o1, (T) := {A € C : AI — T is not lower semi B-Weyl}.
Two other classes of operators related with semi B-Fredholm operators are the
quasi-Fredholm operators and Drazin invertible operators defined in the sequel.
T € L(X) is said to be Drazin invertible if p(T') = ¢q(T') < co. A bounded operator
T € L(X) is said to be left Drazin invertible if p := p(T) < oo and TP (X) is
closed, while T' € L(X) is said to be right Drazin invertible if ¢ := q(T') < oo and
T9(X) is closed. Clearly, T is Drazin invertible if and only if T is both right and
left Drazin invertible. Define

AT):={neN:m>nmeN=T"X)Nker T CT"™(X)Nker T}.

The degree of stable iteration is defined as dis(T') := inf A(T') if A(T") # 0, while
dis(T) = 0o if A(T) = 0.

Definition 1.1. T € L(X) is said to be quasi-Fredholm of degree d, if there exists
d € N such that:

(@) dis(T) =d,

(b) T™(X) is a closed subspace of X for each n > d,

(c) T(X) + ker T is a closed subspace of X.

It should be noted that by Proposition 2.5 of [14] every semi B-Fredholm oper-
ator is quasi-Fredholm. The quasi-Fredholm spectrum is defined as o¢(T) := {\ €
C : M — T is not quasi-Fredholm}, while the Drazin spectrum and the left Drazin
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spectrum are defined, respectively, by o4(T) := {A € C : Al — T is not Drazin
invertible }, and 014(T") := {\ € C: AI — T is not left Drazin invertible}.

Theorem 1.2. ([4]) If T € L(X) then 014(T) = oupn(T) and c4(T') = opp(T).

Lemma 1.3. ([26]) If T € L(X) and p = p(T) < oo then the following statements are
equivalent:

(i) There exists n > p + 1 such that T™(X) is closed;
(i) T™(X) is closed for all n > p.

We now introduce an important property in local spectral theory, see [23] and
Chapter 3 of [1]. A bounded operator T' € L(X) is said to have the single valued
extension property at Ao € C (abbreviated, SVEP at (), if for every open disc
D), € C centered at ¢ the only analytic function f : Dy, — X which satisfies the
equation (Al — T)f(A\) =0 forall A € D,,, is the function f = 0 on D,,. The
operator T is said to have SVEP if T" has the SVEP at every point A € C. Note that
(see [1, Theorem 3.8])

(1.1) p(AM —T) < 0o = T has SVEP at ),
and dually
(1.2) q(AI —T) < co = T* has SVEP at \.

Two important subspaces in local spectral theory are the analytic core and the
quasi-nilpotent part of T. The analytic core K (T') is the set of all z € X such that
there exists a constant ¢ > 0 and a sequence of elements z,, € X such that =g =
2, Txy = xp_1, and ||z, || < ¢™||z|| for all n € N, see [1] for information on K (T').
The quasi-nilpotent part is defined by Ho(T') := {z € X : lim,,_ |Tmz||= = 0}.
Note that N(T™) C Hy(T') for all n € N and (see Chapter 2 of [1]),

(1.3) Hy(M —T) closed = T has SVEP at \.

Recall that T' € L(X) is said to be bounded below if T is injective and has closed
range. Denote by o, (T') the classical approximate point spectrum defined by o, (T')
:={A € C: A\I — T is not bounded below}. Note that if 05(T") denotes the surjec-
tivity spectrum os(T) := {\ € C : A\l — T is not onto}, then ¢.,(T") = 05(T*) and
0s(T) = oup(T7).

It is easily seen from definition of localized SVEP that

(1.4) A ¢ acco,(T) = T has SVEP at ),

where acc K means the set of all accumulation points of K C C, and if T* denotes
the dual of T then

(1.5) A ¢ accog(T) = T™ has SVEP at ),

Remark 1.4. The implications (1.1), (1.2), (1.3), (1.4) and (1.5) are actually equiv-
alences whenever T' € L(X) is semi-Fredholm, or more in general quasi semi-
Fredholm (see [1, Chapter 3] and [3]).

Denote by iso K the set of all isolated points of K C C. According Berkani
and Koliha [15], a bounded operator T' € L(X) is said to satisfy generalized Weyl’s
theorem if o(T') \ opw(T) = E(T), where E(T) = {A €isoo(T) : 0 < a(A = T)}.
Similarly, a bounded operator T' € L(X) is said to satisfied generalized a-Weyl’s



4 C. Carpintero, D. Munoz, E. Rosas, O. Garcfa and J. Sanabria

theorem if 0ap(T) \ oubw(T) = Eo(T), where E,(T) := {A € is00,,(T) : 0 <
a(AMl -T)}.

Generalized Weyl’s theorems have been studied by several authors ([10], [11],
[17] and [20]). In this paper we obtain necessary and sufficient conditions for
which generalized Weyl’s theorems, or generalized a-Weyl’s theorem, holds for
T. We also consider the case when generalized Weyl’s theorems, or generalized
a-Weyl's theorem, is transmitted from T to its dual T, or to the Hilbert adjoint 7"
in the case of a Hilbert space operator. Furthermore, we study both generalized
Weyl’s theorems in the framework of polaroid operators, improving results of
[21] concerning Weyl’s theorem and a-Weyl’s theorem for polaroid operators see
([16].[22]). Our results are applied then to some special classes of operators and,
as a consequence, we extend the results of recent papers [20], [29] and [18].

2. GENERALIZED WEYL'S THEOREM

For a bounded operator T, let IIpo(T) := {A € o(T) : AI — T is B-Browder}.
Observe that in general, ITyo(7) C E(T).

A bounded operator T' € L(X) is said to satisfy Browder’s theorem if o, (1) =
op(T), while T is said to satisfy generalized Browder’s theorem if oy, (T') = opp(T).

Theorem 2.1. If T' € L(X) the following statements are equivalent:
(i) T satisfies Browder's theorem;
(ii) T satisfies generalized Browder’s theorem;
(iii) T has SVEP at all A ¢ ovw (T);
(iv) T* has SVEP at all A ¢ onw (T);
(v) T satisfies generalized Browder’s theorem.

Proof. A proof the equivalence (i) < (ii) may be found in [4]. For the equivalence
(ii) & (iii) & (iv) < (v), see [6]. .

Clearly from Theorem 2.1 we have: 1" or 7* has SVEP implies Browder’s theo-
rem holds for T"and 7.

If T € L(X) let define E*(T) := {\ € o(T) : p(AI = T) = g\ — T) < oo}

E*(T) is exactly the set of poles of the resolvent of 7' ([25, Proposition 50.2]).
Clearly, every pole of the resolvent is an isolated point of the spectrum and it is
also an eigenvalue, so E*(T) C E(T) for every T € L(X).

Note that for T € L(X) satisfies the generalized Weyl’s theorem, then 7" sat-
isfies the generalized Browder’s theorem and in general the converse does not
hold. Observe that E¥(T) = o(T) \ 0(T) = o(T) \ op(T) = o(T) \ 0o (T), when-
ever T has the SVEP on o(T') \ 0,(T). In consequence, we have the following
theorem.

Theorem 2.2. Let T € L(X). Then T satisfies the generalized Weyl’s theorem if and
only if, T satisfies one of the equivalent conditions (i)-(v) of Theorem 2.1 and E*(T) =
E(T).

Example 2.3. Let X = /P(N), 1 < p < oo, and let the unilateral right weighted
shift R be defined by

R(z1, xa, 3, ..) = (=2, 22, %) forall z = (z,,) € ¢*(N).
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It is easily seen that R is quasi-nilpotent, p(R) = oo and hence E*(R) = (). On the
other hand, «(R) = 1, so E(R) = {0}.

Definition 2.4. [24] Let T € L(X) and let d € N. Then T has uniform descent for
n >d,if R(T) + N(T") = R(T) + N(T?) for all n > d. If in addition R(T) + N(T?)
is closed then T is said to have a topological uniform descent for n > d.

Note that every quasi-Fredholm operator has topological uniform descent [16].

Theorem 2.5. For an operator T' € L(X), the following statements are equivalent:
(i) B(T) = BX(T);
(ii) oub(T) N E(T) = 0;
(iii) opw (T) N E(T) = 0;
(iv) 04 (T) N E(T) = 0;
V)IfA € E(T) then g := q(A —T) < coand (A —T)"(X) is closed for all n > ¢;
(V) IfA € E(T) thenp := p(AM —T) < coand (A —T)"(X) is closed for all n. > p;

(vii) If X\ € E(T) then there exists n = n(X\) € N such that Hy(A —T) = N(AI —
)"
(viii) AI — T has a topological uniform descent for all A € E(T')

Proof.

(i) = (ii) Clearly, by Corollary 3.4 of [19] we have o, (T) N E(T) = 04(T) N
E4(T) = 0.

(i) = (iii) Obvious, since by (T) C opp(T).

(iii) = (iv) Every semi B-Fredholm operator is quasi-Fredholm, hence o, (T") C
O'bW(T).

(iv) = (v) By assumption, o4¢(T) N E(T) = 0, hence if A\ € E(T) then \I — T
is quasi-Fredholm. Now, if A € E(T') then ) is an isolated point of o(T) = o(T™),
thus both T"and 7™ have SVEP at A\. By Theorem 3.3 of [19] then Al — T is right
Drazin invertible, so g := ¢(M — T) < oo and (A\] — T)%(X) = (M — T)"(X) is
closed for all n > gq.

(V) = (vi) If A € E(T) then X is an isolated point of o(T), hence T' has SVEP
at A. By assumption ¢ = ¢(AM —T) < oo and (Al — T)9(X) is closed, hence
Al — T is right Drazin invertible, or equivalently, by [19, Theorem 3.3], lower
semi B-Browder. Therefore \I — T' is quasi-Fredholm and the SVEP of T" at A
implies that AI — T is left Drazin invertible, see Theorem 3.2 of [19]. Therefore,
p = p(M — T) < oo. By Theorem 3.3 of [1] then p(A\] — T) = ¢(A\] — T) and
M -TP(X)= N -T)1(X) = (M —T)"(X) is closed for all n > p.

(vi) = (vii) Suppose thatif A € E(T) thenp := p(A—-T) < coand (A[-T)"(X)
is closed for all n > p. Obviously, AI — T is left Drazin invertible, and since ) is an
isolated point of o(T") the SVEP at A for T entails that Hy(A —T) = N(AI = T)")
for some n € N, see [3, Theorem 2.7].

(vii) = (i) We have only to show that E(T) C E*(T). If A € E(T) then there
exists v = () € Nsuch that Hy(A — T) = N[(AI — T)"]. Since A is an isolated
point of ¢(T') then, by [1, Theorem 3.74], X = Hy(AM —T)S KM —T) = N[(Al —
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T)]® KM —T),hence A\ —T)"(X) =M —-T)" (KM -T)) = KW\ -T).
Consequently, X = N[(AI —T)"]® R[(A] —T)"] and this implies that p(A\] - T') =
q(AM — T) < v, see [1, Theorem 3.6]. Therefore A € E*(T), thus the equality
E(T) = E*(T) is proved.

(viil) < (i) This equivalence has been proved by Cao in [17]. .

Corollary 2.6. Suppose that T € L(X) satisfies one of the equivalent conditions (i)-(v)
of Theorem 2.1. Then generalized Weyl’s theorem holds for T if and only if one of the
equivalent conditions (i)-(viii) of Theorem 2.5 holds. In particular, if T or T* has SVEP
then generalized Weyl’s theorem holds for T if and only if one of the equivalent conditions
(1)-(viii) of Theorem 2.5 holds.

In the next result, we consider a generalized Weyl” s theorem for 7. Note that
generalized Weyl’s theorem is not generally transferred by duality. For instance,
if R is the right shift defined in Example 2.3 then its dual L := R* satisfies a
generalized Weyl’s theorem, while its dual L* = R does not satisfy generalized
Weyl’s theorem.

Theorem 2.7. ([1]). Suppose that T satisfies generalized Weyl's theorem. Then the
following conditions are equivalent:

(i) T* satisfies generalized Weyl's theorem;

(ii) E(T*) = E(T);

(ii)) E(T*) C E(T).

A bounded operator T' € L(X) is said to be polaroid if isoo(T') = () or every
isolated point of o(T) is a pole of the resolvent, i.e. isoo(T) = E*(T). Every
polaroid operator is isoloid, i.e. every isolated point of o(T) is an eigenvalue of T'.
In the proof of Theorem 2.7 we have seen that if A is a pole of the resolvent of T’
then ) is a pole of the resolvent of T*. Since iso o (T") = iso o(T™) then follows if
T is polaroid then T is polaroid.

Theorem 2.8. Suppose that T € L(X) is polaroid. If T satisfies Browder’s theorem then
both T and T* satisfy generalized Weyl's theorem.

Proof. By Theorem 2.2 and Theorem 2.1, it suffices to prove E(T) = E¥(T). We
need only to prove the following inclusions E(T) C E*(T), E(T*) C E¥(T*) and
these are clear since 7 is polaroid if and only if 7 is polaroid. .

Let H(o(T')) denote the set of all analytic functions defined on an open neigh-
borhood of ¢(T") and define, by the classical functional calculus, f(T') for every
feH(o(T)).

Theorem 2.9. Suppose that T € L(X) is isoloid and T or T* has SVEP. If generalized
Weyl’s theorem holds for T then generalized Weyl's theorem holds for f(T') for every
feH(a(T)).

Proof. If T or T* has SVEP then the spectral mapping theorem holds for oy, (T'),
see Theorem 3.4 of [6]. By Theorem 2.1 of [18] then then generalized Weyl’s the-
orem holds for f(T') for every f € H(o(T)) (note that in [18] this result is stated
in the case of Hilbert space operators, but the proof works also for Banach space
operators). "
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Theorem 2.10. If T' € L(X) is polaroid and either T or T™* has SVEP then generalized
Weyl’s theorem holds for f(T) and f(T*) = f(T)* forall f € H(o(T)).

Proof. We have seen that Browder’s theorem holds for 7" and 7* whenever either
T or T* have SVEP. Hence, by Theorem 2.8, both T" and T™* satisfy generalized
Weyl's theorem. Now, T' and T are isoloid, and hence by Theorem 2.9 f(T'), as
well as f(T™), satisfies generalized Weyl’s theorem for all f € H(o(T)). .

In the case of operators defined on Hilbert spaces instead of the dual T it is
more appropriate to consider the Hilbert adjoint 77 of 7' € L(H). From classical
Fredholm theory we have o (T") = 0w (T*) = 0w (T) and o,(T") = op(T*) =
Op (T)

Note that (see [2]) T* has SVEP if and only if 77 has SVEP, so if 7" has SVEP
then Browder’s theorem holds for T and 7".

Theorem 2.11. Suppose that T € L(H), H a Hilbert space, is polaroid. If T satisfies
Browder’s theorem then both T and T" satisfy generalized Weyl's theorem.

Theorem 2.12. Suppose that T € L(H), H a Hilbert space, is polaroid. If either T' or
T satisfies SVEP then generalized Weyl's theorem holds for f(T') and f(T") = f(T) for

every f € H(o(T)).

Proof. The SVEP for T or T” entails Browder’s theorem for 7" and 7”. General-
ized Weyl’s theorem for f(T') is clear by Theorem 2.10. To show that generalized
Weyl’s theorem hold for f(T"”) observe first that generalized Weyl’s theorem holds
for T” by Theorem 2.11. The argument of the proof of Theorem 2.11 shows that 7"
is polaroid, hence isoloid. By [29, Theorem 2.2] then generalized Weyl’s theorem
holds for f(T) and f(T") = f(T)’ for every f € H(o(T)). .

The class of polaroid operators is rather large. In [28] the class of H (p)-operators
was introduced and defined as the class of all T € L(X) such that for all A € C
there exists an integer p := p(\) such that Hy(T — AI) = N(T — A)?. Property
H(p) is satistied by every generalized scalar operator, and in particular for p-
hyponormal, log-hyponormal, M-hyponormal operators on Hilbert spaces. Fur-
thermore, every multiplier of a commutative semi-simple Banach algebrais H(1),
see [1, Theorem 4.33]. A remarkable result of Oudghiri ([28, Theorem 3.4]) shows
that, T is H(p) if and only if there exists a function f € H(o(T') not identically
constant in any component of its domain such that f(7') is H(p), or equivalently
that f(T) is H(p) for all f € H(o(T)). Every H(p)-operator T is polaroid [2] and
obviously, by (1.3), has SVEP. Therefore, Theorem 2.10 applies to T" and, conse-
quently, T satisfies generalized Weyl’s theorem. This result may considerably be
extended as follows:

Corollary 2.13. Suppose that T € L(X) is H(p) on a Banach space X and f € H(o(T)
is an analytic function not identically constant in any component of its domain. Then
f(T) and f(T)* satisfy generalized Weyl’s theorem. If T € L(H) is a H(p) operator on
a Hilbert space H then f(T") = f(T)' satisfies generalized Weyl's theorem.

Proof. f(T')is a H(p)-operator and hence is polaroid and has SVEP. By Theorem
2.10 then f(T) satisfies generalized Weyl’s theorem and hence, by Theorem 2.8
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(respectively, by Theorem 2.11) also f(T™*) = f(T)* (respectively, f(1") = f(T)
satisfies generalized Weyl’s theorem. "

We have already observed that every M-hyponormal operator T is a H(p)-
operator. A bounded operator is said to be analytically M-hyponormal (respec-
tively, algebraically M-hyponormal) if there exists an analytic function h € H(o(T')
not identically constant in any component of its domain(respectively, a non trivial
polynomial k) such that h(T) is M-hyponormal. Clearly, by Oudhiri’s result ev-
ery algebraically M-hyponormal operator, and more in general every analytically
M-hyponormal operator, is H(p), so that Corollary 2.13 extends and subsumes
Theorem 4.7 of [20].

A bounded operator T' € L(X) on a Banach space X is said to be paranormal if
|Tz||? < ||[T?z||||z| holds for allz € X. Every paranormal operator on a Hilbert
space has SVEP, see [8]. An operator T' € L(X) for which there exists a complex
nonconstant polynomial h such that 2(T') is paranormal is said to be algebraically
paranormal. Every algebraic paranormal operator defined on a Hilbert space is
polaroid see [7] and satisfies generalized Weyl’s theorem.

Corollary 2.14. Suppose that T € L(H), H a Hilbert space, is algebraically paranormal.
Then both f(T') and f(T') satisfy generalized Weyl's theorem for all f € H(o(T) .

Proof. Suppose that h(T') is paranormal for some polynomial 4. Then h(T) has
SVEP and hence, by [1, Theorem 2.40], T" has SVEP. Moreover, T is polaroid. By
Theorem 2.12 then generalized Weyl’s theorem holds for f(T') and f(1”). "

Corollary 2.14 extends Theorem 4.14 of [20] and Theorem 3.1 of [29], while
Theorem 2.10 subsumes all these results.

3. GENERALIZED a-WEYL’S THEOREM

In this section by using similar methods to those employed in the previous
section, we characterize the bounded linear operators which satisfy generalized
a-Weyl’s theorem. For a bounded operator T' € L(X), we let

IT5o(T) := 0ap(T) \ oubb(T) = {X € 04p(T) : NI — T is upper semi B-Browder}.

We have that IT§,(T") C E,(T) for any operator T € L(X).
A bounded operator T' € L(X) is said to satisfy a-Browder’s theorem if o, (T") =
ouwn(T'), while T'is said to satisfy generalized a-Browder’s theorem if 1w (T') = oubn(T).
Theorem 3.1. If T' € L(X) the following statements are equivalent:

(i) T satisfies a-Browder’s theorem;

(if) T satisfies generalized Browder’s theorem;

(iii) T has SVEP at all A ¢ 04w (T);

(iv) T has SVEP at all X ¢ ouww(T).

Proof. A proof the equivalence (i) < (ii) may be found in [4]. For the equivalences
(i) < (iii) and (ii) < (iii) see [5] and [9]. n
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From Theorem 3.1 follows that if 7" has SVEP then a-Browder’s theorem, or
equivalently generalized a-Browder’s theorem holds for 7. Note that also the
SVEP for T* entails both Browder’s theorems, see [9, Corollary 2.10].

Definition 3.2. Let T € L(X). A € C is said to be a left pole of the resolvent of T, if
X € 04p(T) and XI — T is left Drazin invertible.

In the sequel we set E,*(T) := {\ € 04, (T) : \is a left pole of the resolvent o T'}.

Theorem 3.3. Let T € L(X). Then T satisfies the generalized a-Weyl’s theorem if and
only if T satisfies one of the equivalent condition (i)-(iv) of Theorem 3.1 and E,(T) =
EL(T).

Proof. It suffices to prove the equality 113, (7) = E(T). "
Theorem 3.4. For a bounded operator T € L(X) the following statements are equiva-
lent:
(i) Eo(T) = E;(T);
(ii) oubb(T) N Eq(T) =
(ii1) oubw(T) N E,(T) =
(iv) O'qf( YN EL(T)=0;
(v) for every A € E,(T) there exists d = d(\) € N, such that Hy(A\l — T) =
N —T)? and (M — T)™(X) is closed for all n. > d;
(vi) forevery A\ € E,(T) thenp :=p(AM —T) < oo and (A — T)"(X) is closed for
alln > p.

\

\

Theorem 3.5. If T' € L(X) then the following statements holds:
() If T* has SVEP then oy (T) = opw (T).
(ii) If T has SVEP then oupw (T*) = obw (T).

Proof. See [1] »

A bounded operator T' € L(X) is said to be a-polaroid if iso 0., (T") = () or every
isolated point of 0,,(7') is a pole of the resolvent, i.e. iso 0., (T') = E%(T). Every
a-polaroid operator is a- isoloid.

Theorem 3.6. Suppose that T € L(X) is a-isoloid. If T or T* has SVEP and generalized
a-Weyl's theorem holds for T then generalized a-Weyl's theorem holds for f(T') for every

f e H(o(T)).

Proof. If T or T* has SVEP then the spectral mapping theorem holds for o (T),
see Corollary 3.72 of [1]. By Theorem 2.2 of [18] it then follows that a-Weyl’s
theorem holds for f(T) for every f € H(o(T)). =

Theorem 3.7. Suppose that T € L(X) is polaroid. Then we have:

(i) If T* has SVEP then generalized a-Weyl theorem holds for f(T') for all f €
H(o(T)).

(ii) If T has SVEP then generalized a-Weyl theorem holds for f(T*) for all f €
H(o(T))-
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Corollary 3.8. Let T be a Hilbert space operator.

(i) If T’ is a H(p)-operator or is algebraically paranormal then generalized a-Weyl's
theorem holds for f(T') forall f € H(o(T)) .

(ii) If T is is a H (p)-operator or an algebraically paranormal operator then generalized
a-Weyl's theorem holds for f(T") forall f € H(o(T)).

The result of Corollary 3.8, part (i), in the case of being T” algebraically para-
normal, has been proved in [29, Theorem 3.2] by using different methods. Corol-
lary 3.8, part (i), also subsumes Theorem 3.3 of [18], where was considered the
case where 7" is p-hyponormal or M-hyponormal.
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PARTE II

OPERADORES ASOCIADOS, m-ESTRUCTURAS Y
PRODUCTOS GENERALIZADOS

Esta segunda parte del trabajo, de manera similar a la parte anterior,
comienza con una vision global del contenido, orientaciéon y propésito de los
articulos tratados, y describiendo los aspectos que motivaron el desarrollo de
los mismos y los resultados obtenidos.

En topologia general, basicamente se estudian la estructura de espacio
topoldgico y las funciones continuas entre estos espacios. En la formulacién
y estudio de las propiedades asociadas a un espacio topolégico abstracto, asi
como también de las funciones continuas entre éstos, juegan un papel pre-
ponderante los conjuntos abiertos. También entran en juego los conjuntos
cerrados, pero éstos pueden verse como los duales de los conjuntos abier-
tos con respecto a las operaciones conjuntistas de complementacién, unién
e interseccion. En el afio 1963, N. Levine ([16]), introduce los conjuntos
semiabiertos que son una clase mas amplia que la de los conjuntos abier-
tos de un espacio. Después de los trabajos de Levine, el interés de muchos
matemaéticos dedicados a la topologia se centrd en la generalizacion de concep-
tos topoldgicos y diversas formas de continuidad, utilizando conjuntos semi-
abiertos en lugar de conjuntos abiertos. S. Kasahara, en el ano 1979 ([15]),
da el concepto de operador asociado a una topologia lo que permite definir
nuevas clases aiin més abstractas de conjuntos e introducir propiedades gene-
ralizadas de separacion, continuidad, compacidad y otras nociones derivadas
de las nociones topoldgicas clasicas, pero presentadas ahora en un nuevo y
mas amplio contexto. Si bien esto originé que en las ultimas décadas se hayan
venido realizando intensos trabajos de investigacion en lo relativo a gene-
ralizaciéon de nociones topolégicas via operadores; en particular, en la litera-
tura habian aparecido muy pocos resultados relacionados con operadores que
actuaban sobre el espacio producto. Salvo el trabajo de T. Fukutake ([11]),
que trata el caso de dos factores, esta situaciéon practicamente no habia sido
estudiada. En este sentido, el primer articulo que contiene esta parte del
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trabajo titulado ” A Tychonoff theorem for a-compactness and some applica-
tions”, de C. Carpintero, E. Rosas y J. Sanabria, publicado en la revista In-
dian Journal of Mathematics, en el ano 2007, aborda esta situacion y en el se
logra demostrar una version del Teorema de Tchynoff para la a-compacidad,
cualquiera sea el operador a asociado a la topologia producto compatible con
los operadores presentes en los factores.

Centrando su atenciéon en algunas propiedades de diversas clases de con-
juntos derivados de la nocién de operador asociado de Kasahara; H. Maki
en 1996 ([17]), da un enfoque més axiomdtico a la generalizacién de no-
ciones topoldgicas a través de operadores, introduciendo el concepto de m-
estructura o estructura minimal. En este contexto se introduce el segundo
articulo de esta parte, titulado ”Minimal structures and separations proper-
ties”, de C. Carpintero, E. Rosas y M. Salas publicado en la revista Interna-
tional Journal of Pure and Applied Mathematics el ano 2007, en el cual se
logra proporcionar una imagen global del comportamiento de las propiedades
de separacion, mediante la nocién de m-estructura. Lo que permite reducir
a un solo marco teérico muchos de los trabajos publicados aisladamente en
este campo. En esta misma direccién, también se introduce el articulo ” Con-
juntos myx-cerrados generalizados” de M. Salas, C. Carpintero y E. Rosas,
publicado en la revista Divulgaciones Matemdticas el ano 2007, en el que se
generalizan resultados relativos a conjuntos g-cerrados y axiomas bajos de
separacién.

De manera similar a Maki; A. Csészar en el afio 2005 ([7]), introduce
la nocién de topologia generalizada (abreviada GT). Cabe senalar que la
sutil diferencia entre las nociones de m-estructura y topologia generaliza-
da, esta determinada por una propiedad conocida como la propiedad (B) de
Maki ([17],[18]), también conocida simplemente como la propiedad de Maki
([17],[18]). No obstante, en ambos contextos, en el articulo titulado ”Inad-
missible families and product of generalized topologies” de C. Carpintero, E.
Rosas, O. Ozbakir y J. Salazar, publicado en la revista International Mathe-
matical Forum el afio 2010, se presenta un nuevo planteamiento que permite
analizar el comportamiento del producto arbitrario de topologias genera-
lizadas (respectivemente, m-espacios), y en el cual no sélo se generalizan los
resultados obtenidos por A. Csészér en [8], si no que ademads se logra de-
mostrar que muchas formas generalizadas de compacidad se transmiten de
los factores al producto y viceversa.
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2.1. UN TEOREMA DE TYCHONOFF PARA LA
a-COMPACIDAD
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In this article, we have introduced a new class of associated operators
on the product topology on which each factor of the product space has
an associated opcrator to the respective topology and we will prove an
analogue to the Tychonoff theorem for a-compactness. Moreover, we
investigate the relationship between the new operators on the product
topology and the operators associated to cach factor, and we study
some classes of functions and their connections with the notions men-

tioned.

1. Introduction

Given a topological space (X.7), along with the classical concepts
of open set and closed sets, there are classes of sets that have been stud-
ied: semi open sets (A C Cl(Int(A))), pre-open sets (A C Int(Cl(A))),
pre-semi open sets (A C Int(Cl(Int(A)))). These sets have been studied
by many mathematicians, as is the case of: Levine [5], Bhattacharyya and
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Balachandran {1}, in order to introduce the generalized properties of sep-
aration, continuity and related notions. We can observe that the above
sets and its compositions are classical examples of operators. We define
o @ P(X) — P(X) as an operator associated with 7 on X if U C «(U)
for all U € 7. Rosas, Carpintero and Vielma in [9], using this notion, in-
troduced the a-semi-open sets (A is an a-semi-open set if U C A C a(U),
for some U € 7) and a-semi-closed sets (A is an a-semi-closed if X \ A
is an a-semi-open set) and have shown more general notions and results
by the mentioned authors. In the literature are known a few results about
product spaces when in its factors the notions of semi open sets, pre-open
sets, pre-semi open sets, etc. Moreover the behaviour of the product space,
when cach of its factors satisfies some specific conditions with respect to
the associated operators has not been studied. In this paper, we study a
class of operators on the product space where each factor has the property
of o~ compactness. Some other results related to this class of operators are
also obtained.

2. Preliminary

In this section, we mention the terminology and some basic results
that we use throughout this article.

DEFINITION 2.1. Let (X, 7) be a topological space. The operator
a : P(X) — P(X) is said to be an operator associated to 7 if U C a(U),
forall U € 1. '

DEeFINITION 2.2, Let (X, 7) be a topological space and o : P(X) —
P(X) be an operator associated to 7. If a(U) C a(V), for all U C V, then
a is said to be a monotone operator.

REMARK 2.1. Given an operator a : P(X) — P(X) associated
to 7, the image a(S) of a subset S C X is a subset of X. The image of
a collection F of subsets of X by the operator o, denoted by a(F), is the
collection

a(F) ={a(U): U eF}.

In a natural way, we can define the image of a family &, where its members
are collections of subsets of X, i.e ¥ C P(P(X)), by the operator a as
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follows:
a(S) ={a(F): Fe 31,

‘where o(F) = {a(U) : U €F}, for each collection of subsets F € <.
Observe that a(S) defined in this way is a family whose members arc
collections of subsets of X.

Abusing the notation and without danger of confusion, according
to the context, a(S) (resp. a(F), a(S)) denote a subset of X (resp. a
collection of subsets of X, a family whose members are collections of subsets
of X).

The following example shows the form that we are going to use in
the above notation.

EXAMPLE 2.1. Let a = CI be the closure operator associated with
the usual topology in R. Consider: § = (a,+00), F = {(a,+0) : a €R}
and & = {F, : a € R}, with Fgq = {(a,b) : b > a}, for each a € R. Then:

(i) «(S) = [a, +00),
(ii) a(F) = {[a,00) : a € R},
(iii) a(Q) = {{[a,b] : b > a} :a € R}.

DEFINITION 2.3. Let {(X;,7;) : i € I} be a collection of topo-
logical spaces and for each ¢ € I, o; : P(X;) — P(X;) denote the operator
associated to 7;. We say that the operator p : P(X) — P(X) associated to
a product topology, where X = [[,.; X; is compatible with the a;, i € I,
if for each basic open set < U;,,Uj,, ..., U;,, > in X = [I;c; Xi we have

P(< UilaU‘izy ey Uz'n >) =<y, (Uil)aaiQ(Uiz)s ""ain(Uin) >,

where

!
s
2
x
—
s

< U‘l:1’ Uiz; seey Lfin >

r
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and

< iy (Ui) i (Uiy), o0, (Us) > = (] o, (Us) x (T Xa)
j=1 k#1;

= ﬂ pi_jl(aij (Uij ),
j=1

and p; : X — X;, i € I, is the it* projection.

REMARK 2.2. In general p = J];c; i, given by p(IT,.; A;) =
[T (A;) is not an operator associated to a product topology, because the
empty set has many representations. Thus p does not represent a function.

ExAMPLE 2.2. Ifin Definition 2.3, for each i € I, we define
a; = Cl (resp. Cl(Int),Int(Cl),Int(Cl(Int))).

Then p = Cl (resp. Cl(Int),Int(Cl),Int(Cl(Int))) is in each case an oper-
ator on X compatible with the ;.

The following example shows that there exists many operators on the
product space which do not equal to the operator defined in the Example
2.2. But they are compatible with the given operators.

ExaAMPLE 2.3. Let f;: X; — X;, i € I, be functions. Define
f:X — X, where X = [[,.; X;, as follows:

f(x) = (fi(z:))ier for each z = (z;)ser.
Observe that
F(114) =1 7:(49),
il il
for any A; C X;, and
FUT A0 = [ A7 (F:(4))

el i€l

If we consider, for each i € I, 7; a topology on X;, then a;(A4;) =
£ H(f:(A:)) and p(A) = f~1(f(A)), are operators associated with the topol-
ogy 7; and the product topology, respectively. If each f; : X; — X, is sur-
jective, then p is compatible with the operators a;. Observe that o; and p
are monotone operators.
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Now we study the structure of the p-semi-open sets in the product
space X = [];c; Xi, in the case when p is compatible with the operators
associated with the topology on each space X;.

LEMMA 2.1. Let {(Xi,7) : i € I} be a collection of topological
spaces with associated operators oy to T;, for each i € I. Suppose p :

P(X) — P(X), where X = [[;c; Xi, is @ monotone and compatible operator
with the a; such that p(B) = 0. If 0 # [L;c; Ai, A; € X5, is a p-semi-open
set in X, then A; is a;-semi-open set in X; for each i € I.

PROOF. Suppose that @ # [],c; Ai is a p-semi-open set in X. Then
there exists an open set U C X such that U C [[,.; 4 € p(U). It is
clear that U # @ because if U = . Then @ # [[,.; 4i C p(0) = 0, this
is impossible by the hypothesis. Let p; : X — X, be the 4th projection.
Then p;(U) C p;(I];c; Ai) = A;. Hence pj(U) C A;, for each j € I. On
the other hand, for all § € I we have

Uc]p)c <pi(U)>.
iel

By hypothesis g is monotone and compatible with each a;. Since
pj : X — X, is an open map, we obtain that

[T 4 Co(U) Cp(<pi(U) >) = < aj(pj(U)) >.
el
This implies that A; C «;(p;(U)) for each j € I.
By the above argument we see that there exists an open set p;(U) C
X; which satisfies

pi(U) € A; C a5(p;(V)),

from which we conclude that each Aj; is an oj-semi-open set in X;.

COROLLARY 2.2 Under the hypothesis of Lemma 2.1, if the product
H,-e 7 Ai, 15 a nonempty proper subset and p-semi-open set of X, then there
exists a finite subset {iy ia,..., i,}C I such that the a;-semi-open sets A;
are distinct from X;, for each i € {i1,12,...,in}.
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PRrOOF. By hypothesis there exists an open set § # U C X such
that

Uc H Ai C p(U).
il
Consequently there exists a point x € U and a basic open set in X
< U, Uy, .. Ui, >,
such that

re <U,,Uy,.. U, > gUgHAigp(U).
el

It follows that x € < U, Uy, ..., Us, > C [];c; Ai. But this implies that
X; = Aj, for each j & {i1,42,...,7n}.

The following theorem generalizes the results obtained by Bhat-
tacharyya and Lahiri [1] in the context of associated operators.

THEOREM 2.3. Let {(X;,7;) : i € I} be a collection of topo-
logical spaces with operators o; : P(X;) — P(X;) associated with Ty,
for each i € I, and p : P(X) — P(X), where X = [lic; Xi, be a
monotone and compatible operator with the o; such that p(®) = 0. Then
< Aip, Ay, ooy A, > 15 p-semi-open & A;; 15 oy -semi-open j=1,..,n.

PROOF. (Sufficiency). It follows from Lemma 2.1.

(Necessity). Let A;;, Ai; # Xi,;, be a «;;-semi-open set in X;; for
each j € {1,2,...,n}. By hypothesis, there exist open sets Ui, € X;; such
that U;, C A;; C a;, (Uy,), for 7 = 1,2,...,n. Note that from U;, C A4;; #
X;;, we obtain that U, # X, for each j € {1,2,...,n}. Therefore

< Uy, Uiy, .. Ui, >C< Ayy, Aiyy -y Ay, >
C< iy (Uiy), @ig (Ui, )y -y 4, (Us,) >,
from which we obtain that
< Uiy Uigy ooy Uiy, >C< Ay, Aigs ooy Ay, >C p(< Uy Upy,y o U, >).
Thus < A;,, Aiy, ..., Ai,, > is p-semi-open.

COROLLARY 2.4. Let {(X;,7;):1 € I} be a collection of topological
spaces with operators «; : P(X;) — P{X;) assoctated with 7;, for each
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i€ l, and let p: P(X) — P(X), where X = [1;e; Xi, be a monotone and
compatible operator with the a; such that p(0) = (. Then:

p—sCl(]J A € [ - sCia),
iel ie]
“where p — sCl and «; — sCl are defined in [3].

Now, we introduce the (a, 3)-irresolute functions that will be useful
in the sequel.

DEFINITION 2.4. Let (X,7) and (Y, o) be two topological spaces
with operators «, 8 associated with the topology 7 and o, respectively.
Then f: X — Y is said to be an (o, B)-irresolute if f~1(V') is a-semi-open
set in X for each 3-semi-open set V in Y.

REMARK 2.3. Observe that:
(i) f f:(X.7,a) — (Y,0,8) is a (. ()-irresolute function and g :

(Y.o,8) — (Z,0,v) is a (8,~)-irresolute function, then the composition
gf : (X,7,0) = (Z,8,7) is a (a, y)-irresolute function.

(i1) f is a (Clx,id)-irresolute function « f is a semi-continuous map
(in the sense of Levine [5]).

(ili) f is a (idp(x),idp(y))-irresolute function <> f is a continuous
map.

(iv) f is a (Intx, Inty)-irresolute function < f is an open map.

THEOREM 2.5. Let {(Xi,7):1€ I} be a collection of topological
spaces with operators, «; associated with each topology 7, and p: X — X,
where X = Hiel X;, be a compatible operator with the «;. Then the ith
projection p; : X — X; is a (p, oy )-irresolute function for each i € I.

ProoF. Let A; # X; be a a;-semi-open set in X;. Then there
exists an open set U; € 7; such that U; C A; C «;(U;). Consequently

<U; >= pi_l(Uz') - pi-l(Ai) C p;-'l(ai(U,-)) =< (Ii(Ui) >= /)(< Us; >).
Therefore pg'l(A,-) is a p-semi-open set.
In the case where A; = X, p{l(Ai) = 1,1 X; is a p semi-open set.

COROLLARY 2.6. Let C = {(X;, 1) : i € I}U{(Y.,0)} be a collection
of topological spaces with operators oy associated with T;, and for each i € 1,
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fi 'Y — Xi be functions. If p: P(X) - P(X), X = [Lic; Xi, is a
monotone. and compatible operator with the a; such that p(0) = 0, and
fY — X is defined by f(y) = (fi(y))ier, if f is a (idp(yy, p)-irresolute
function, then each f; is a (idp(y), a;)-irresolute function.

3. a-Compactness in the Product Space

In this section, we shall study the relationship between the general-
ized notions of a compatible operator in the product space with the gener-
alized notions relative to each factor.

DEFINITION 3.1. Let (X, 7) be a topological space and o : P(X) —
P(X) be an operator associated with 7. Then X is said to be a-compact

space if every open cover C of X contains a finite subcollection {Cy, ..., Crn} C
C such that X = [J;_; a(Cy).

DEFINITION 3.2. Let X be a nonempty subset. A collection F
of subsets of X is said to be finitely inadmissible family, (briefly) f.i, if no
finite subcollection of F covers X.

The following lemma is a classical result. We use the axiom of choice
to prove this result.

LEMMA 3.1. Let F be a finitely inadmissible family of subsets of
X. The following assertions hold:

(i) There is a finitely inadmissible family F* of subsets of X such
that F C F*. Moreover F* is mazimal with respect to the partial order

c<C aecc(

defined on the set ¥ of all finitely inadmissible family of subsets of X
containing F.

(ii) If S1NSyN...N S, € F*, then Sy € F* for some 1 <k < n.
(iii) If S ¢ F* and SC §', then § ¢ F*.

ProoF. (i) {F} C < is a simple order set. Now using the maximal
principle, there exists a maximal simply ordered subset & C & such that
[F} C 3§, s0 F € . Now we define F* = Ugeg €. Clearly F C F*.
On the other hand, if there exists a finite collection {57, S, ..., S} C F~
such that X = {Jp_, Sk, then Sx € Cx and Ci€ S for each k = 1,2, ..., n.
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But & is simply ordered set, so there exists some 1 < j < n, such that
Ck C€Cj, for all k = 1,2,...,n. This implies that Sy € C;, for k = 1,2, ..., n,
and X = Jg_, Sk; but it is impossible because C; is a finitely inadmissible
family. Consequently, F* is a finitely inadmissible family. Finally, we
- observe that from the definition of F*, it follows that C C F* for any
C € &. Therefore &' U {F*} is simply ordered. From the maximality of
', it follows that F* € &'

(ii) and (iii), are direct consequences of the definition of F*.

REMARK 3.1. Suppose that (X,7) is a topological space, a an
operator associated with 7, F is a collection of subsets of X such that
a(F) = {a(U) : U € F} a finitely inadmissible family, and R denotes the
family of all collections of subsets of X that are finitely inadmissible and
contain a(F). Then using a similar argument as in the proof of Lemma
3.1(i), there exists a maximal simply ordered subset 8 C R such that
{a(F)} C R If F*, denotes the finitely inadmissible family of subsets of

X which is maximal with respect to the inclusion on ® and contain a(F),
defined in Lemma 3.1(i), then

Fa=J 06
geR’

Using the notation of Lemma, 3.1, we obtain the following result.

THEOREM 3.2. If F and a(F) are finitely inadmissible collections
of subsets of X, then alF*) C F*y:

PROOF. From Lemma 3.1 and Remark 3.1, we obtain that

and

Now it follows that

o) =a(lJOy=Ja)= | C.

ceg’ ces’ C' €a(Q')
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Since {F} C ', then {a(F)} C a(F'). But a(g) is simply ordered, since
' is simply ordered. Using the maximality of ®', we then obtain that
0(3") C R'. Therefore a(F*) C F*,.

The following lemma is a generalized version of the Alexander Lemma
([10]), for a-compact spaces.

LEMMA 3.3. Let (X,7) be a topological space and o : P(X) —
P(X) an operator associated with 7 and S be a subbase for 7. Then X is
an a-compact space if and only if each covering C of X by elements of S
contains a finite subcollection {C1,Ca,...,Cpn} such that X = |J;_; a(Ck).

PROOF. (Sufficiency). It is an immediate consequence of Definition
3.1. (Necessity). Suppose that X is not a-compact space.- Then there exists
an open cover C of X such that the collection of subsets

a(C) = {a(C) : C € C},

does not contain any finite subcollection that covers X. Observe first that
the covering C does not contain any finite subcollection {C},Cs, ..., Cr}
that covers X. In fact, if

then a(C) contains a finite subcollection {a(C1),a(Cy),..., a(C,)} that
govers X, and this is impossible. Using this fact, we have that C and
a(C) are finitely inadmissible family of subsets of X. On the other hand,
for each point £ € X there exists an open set U, € C and elements
§i9,50) .., 85 € 8, such that z € SV N8P .. S® c U, HC* s
the maximal finitely inadmissible family corresponding to the collection C,
given in Lemma 3.1, it then follows that

28NS n.ns®cu, eccer

Now, using this fact and Lemma 3.1(iii}, we have ng) ﬂSéx) n..NSE e ¢,
Again by using Lemma 3.1(ii), there exists element S,(cx) €eC’,1<k<n,
such that z € S,(f). Therefore, for each 2 € X there exists .S',(f) € C*NS such

that z € § (m), and hence C* NS is a collection of subbasics elements that
covers X. Observe that a(C* NS) C a(C*) and by Theorem 3.2 o(C*) C
C*a. Therefore, a{C* NS) C C*,, we will have that a(C* N S) is finitely
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inadmissible and does not exist a finite subcollection {57, Sy, ..., Sp,} € C*N
S such that {a(S1), a(Sz). ..., ®(Sn)} covers X.
The following theorem generalizes the classical Tychonoff theorem,

which is obtained from the special case & = idp(x), also generalizes a
result obtained by Fukutake in [4].

THEOREM 3.4. Let {{X;,7i):1 € I} be a collection of topological
spaces with operators «o; : P(Xi) — P(X;) associated with ;, for each
i € I, and p : P(X) — P(X), where X = []..; X, be a compatible
operator with the ;. If X = [Lic; Xi # 0, then X is a p-compact space <
each X; is an a;-compact space.

PRroOOF. (Sufficiency). Let C* = {U} : A € A;} be an open cover of
Xi, i € I. Then the collection {< U} >: A € A;}, is an open cover of X. By
hypothesis, X is a p-compact épace, so there exists a finite subcollection
{A1, A2, ..., An} C Ay such that X = g, p(< U} >). But p is compatible
with the operators a;, 7 € I, so

!
X=\|J<aUi,)>.
k=1

Taking the i** projection, we obtain that:

Xi=p; (X)) =p7 (| J(< (UL, >)
k=1

n n
= Ur (< auUi,) >) = | esU,).
Therefore

Xi= | ai(UL),
k=1

and X, is an a;-compact space.

. (Necessity). Suppose that each X; is an «a;-compact space and X
15 not a p-compact space. Using Lemma 3.3, there exists a covering C
of X, by subbasic elements in the product topology on X, and there
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does not exist any finite subcollection {C1,Cs,...,Cn } € C such that
{p(C1), p(C2), ..., p(Cy)} covers X. For each i € I, consider

Ct={U':U' € r; and p; | (U') =< U? >€ C}.

We claim that, C* is not a covering of X, for each i € I; In fact, suppose
that C* is a covering of X;, then the a;-compactness of X; implies the
existence of a finite subcollection {U}, U3, ..., UL} C C* such that

n
X; = | ai(W})
k=1

Therefore

= Jnl<Ui>)

k=1
Hence X = Ji_; p(< U} >), and this is impossible, because < Ul >¢ C
for each k = 1,2,...,n. Therefore X; € J{U; : U} € C'} as claimed.
Consequently, there exists a point 2; € X; \ U{U} : U} € C} for each
¢ € I. Define z = (2;);c;. Since C covers X there exists a subbasic element
< U? >e C, such that z €< U7 >. This implies that pi(z) = z; € Uj,
which is impossible, because U7 € ¢J.

COROLLARY 3.5. Let {(X;,7;):1 € I} be a collection of topological
spaces with operators a; : P(X;) — P(X;) associated with 7;, for eachi € I,
and p: P(X) — P(X), where X = [],.; Xi, be a compatible operator with
the a; such that p(0) = @. Then,

X; is az-semi Ty = I;jer X; is p-sems Ty,
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for each k =0,1, 2.
4. Applications in the Finite Case

THEOREM 4.1. Let (X,7), (Y,0), (Z,8) be three topological spaces
with operators a, (3, v associated with 7, o and 6, respectively. Let p :
P(X xY) — P(X x Y) be a monotone operator which is compatible with
xand 3. If f: X - Zand g:Y — Z are (a,0) and (8, 6)-irresolute
functions, respectively, and (Z,8) is a -semi Ty (9], then the following set

{{z,y) € X xY: f(z) = g(y)}

is p-semi-closed in X x Y.

PrOOF. Let A = {(z,y) € X xY : f(z) = g(y)}. If (z,y) ¢
A, then f(x) # g(y) in Z. By the hypothesis (Z,p) is a f-semi T3, so
there exist open sets W,, W, in Z such that flz) € Wy, g(y) € W,
and (W) N9(W,) = 0. But each open set in Z is 6-semi-open and since
fis (a,8)-irresolute function, follows that f ~1(W,) is an a-semi-open and
z € f~1(Wy;). In the same way g~}(W,) is B-semi-open and y € g {(W,).
We claim that (f~1(W;) x g"Y(W,)) N A = 0. In fact if (f1w,) x
g~ (W,)) N A # 0 then there exist (u,v) € (f~H{(W;) x g Y(W,)) N A and
hence f(u) € W,, g(v) € Wy, and f(u) = g(v). From this it follows that
Wz N W, # 0, which is impossible since W, N Wy CO(W)no(W,) = 0.

On the other hand, using Corollary 2.4, we obtain that YW, x
9" (W,) is p-semi-open in X x Y. Moreover, (z,y) € fHW,) x g YW,
and (f~1(W,) x g WNDNA =0, so we may conclude that (z,y) ¢
p— sCl(A).

COROLLARY 4.2, [et (X, 7) and (Y,0) be two topological spaces
with operators a and 3 associated with - and o, respectively. Consider
p: P(XxXY)— P(X x Y') a monotone operator which is compatible with
aand 8. If f: X — Y is an (o, B)-irresolute function and (Y,0) is a
G-semi T, space, then the graph of f

Gf)={(z,y) e X xY :y = fx)},
s p-semi-closed in X xY.

o PROOF. Let yg consider the identity function idy : Y — Y. Clearly
idy is a (5,ﬂ)—irresolute function. By the hypothesis f:X - Y isan
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(@, B)-irresolute function and (Y,0) is a #-semi T3 space. Using Theorem
4.1, it follows that

{(my) e X XY : f(z)=idy(y)} = {(z,y) e X x Y : y = f(x)} = G(f)
is p-semi-closed in X x Y,

COROLLARY 4.3. Let (X,7) and (Y,0) be two topological spaces
with operators « and (3 associated with T and o, respectively. Consider
p:P(X xY)— P(X xY) amonotone operator which is compatible with
aand 3. If f: X —Y is an (&, B)-irresolute function, B CY is a semi-
compact space, (Y.o) is a (B-semi T2 space, and G(f) is p-semi-closed in
X xY, then f~Y(B) is an a-semi-closed set in X.
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Abstract: In this work the notion of m-operator for an m-structure my
on a set X is introduced. Also several separation forms for points of a set
X are described and characterized, in a not necessarily topological context.
We also study different relationships between these separation properties,
and we establish conditions in regards to the operator which determine the
equivalence between these separation forms.
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1. Introduction

After the works of Levine [5] and Kasahara [4], various mathematician turned
their attention in introducing and studving diverse classes of sets related to
the notion of operator associated to a topology on a set. Each one of these
classes of sets is, in turn, used to obtain different separation properties and
new forms of continuity. It is as well as they arise, among others: semi-
open, pre-open, (-open, a-semi-open, f-closed, semi-6-open, (c,[3)-semi-
open, v — (a, B)-semi-open and the different axioms or formulated separation
properties respectively, in terms of each of these classes of sets. The descrip-
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tion, the propertics and also in the study of situations referred previously,
used by Maki [6], in abstract form by means of m-structure or minimal struc-
ture notions on a set. In this work, we introduce the notion of m-operator
on m-structure and we show that they can be also described, studying the
separation properties on a set, without necessarily to have a topology on
it. We also find, that the obtained results constitute a gencralization of
many of the classic results and in particular, those obtained by Caldas et al
in [1]. The results that are obtained also provide a conceptual frame that
summarizes many relative separaticn forms in generalized sets derived in a
topological space via operators existent in the literature.

2. Minimal Structures

In this section, we introduce the m-structure and the m-operator notions.
Also, we define some important subsets associated to these concepts.

Definition 2.1. Let X be a nonempty set and let mx C P(X), where
P(X) denote the set of power of X. We say that mx is an m-structure (or
a minimal structure) on X, if ) and X belong to my.

The members of the minimal structure my are called my-open sets, and
the pair (X,mx) is called an m-space. The complement of an m x-open set
is said to be an my-closed set. An m-structure myx on a nonempty set
X, is sald to have the property (B) of Maki, if the union of any family of
elements of my belongs to my. Observe that any collection § £ J C P(X),
always is contained in an m-structure that have the property (B), as we
know, mx(J) = {0, X} U{Upes M : 0 # J € J}. In particular, when
J = mx, we denote by m'X =mx(J). Clearly myx = m'X, if my have the
property (B) of Maki. Note that if mx is an m-structure and Y C X, then
{MNY : M €myx} is an m-structure on Y, and is denoted by my|y, and
the pair (Y, myy) is called an m-subspace of (X, mx).

It is important to observe that the m-structure notion, uses in abstract
form the properties of many important collections of generalized sets without
the necessity of a topological structure, some of them are illustrated in the
following situations:

1. Given a topological space (X, 1), the collections: 7, 79, SO(X),
PO(X), f(X) are m-structures on X, and all satisfy the property (B). Also,
the collection of closed sets in X is an m-structure and satisfy the property
(B) of Maki, if (X, 7) is an Alexandroff space.
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™

.

2. If o is an operator associated with the topology 7 on X in t:ho sense of
Carpintero et al [2] and [3], then the collections I'y and a-SO(X,7) are m-
structures. T, also has the property (B) and a-SO(X,7) has the property
(B), if & is a monotone operator. .

3. If v, /3 are operators associated with a topology 7 on X, the collectior
(o, B) — SO(X,7), introduced by Rosas et al in [9], also is an m-structur
and satisfy the property (B). .

4. If o, B and ~y are operators associated with 7 on X, the collectior
v — (a, B)-SO(X, 1), defined by Rosas et al in [11]3 is also an 'nzrstructm'é
and satisfy the property (B), when the operator  1s expansive on the clas
(o, B) — SO(X, 7).

Definition 2.2. Let mx be an m-structure on a set X #0. Anm
operator on mx, 18 an application « : P(X) — P(X) that is expansive o1
mx (that is, U C «(U), for all U € my).

A particular case of the previous definition is when my =T, in.whic
the m-operator notion is exactly the notion of operz?tor‘ associated with th
topology introduced by Carpintero et al [2]. Also if « is an»m—operator 0
my and Y C X, the restriction c |p(vy given by @ lp(v) (MNY) = a(M)NY
for all M C X, is an m-operator on myjy-

Definition 2.3. Given two mx-operators o, § : P(X) — P(X)onmy
We say that a < B if a(U) C B(U), for all U € mx.

Note that < defined previously, is an order on the class {« @ ais ax
m-operator on my }.

Definition 2.4. Let o : P(X) — P(X) be an m-operator on my ab
A C X. Ais called an a-mx-open set, if for each o € A there exists a
m /\iC)1>611 set U such that # € U and a(U) € A. The complement of ¢
a-mx-open set is an q-m y-closed set.

We denote the collections of all a-my-open scts of X by O(X,m_\:,a
Observe that the collection O(X, mx, @) is stable under the union of se
and if 7y has the property (B), then we obtain that O(X,mx,a) C mx

Also, we note that: o _

1. If o =ipx) and my is any m-structure satlsfymg the prpperty (B
then the a-mx-open sets are elements of mx. In particular, if mx =
where 7 is a topology on X, and « = ip(x), the a-mx-open sets are op

9. Ifmy = 7, where 7 is a topology on X, and « is an operator associat:
with 7, the a-mx-open sets are the a-open sets, described in [8].

S S SRR B
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3. Ity = B-SO(X, 1), @ and ;3 operators associated with 7, where « is
expansive on the class 4-SO(X, 7), the a-m x-open sets are the («, §)-semi-
open sets, described in [9].

4. Umy = y-(a, B)-SO(X, 7), o,8 and v are operators associated with
7, where v is expansive on the class (o, 8)-SO(X, 7), the a-my-open sets
are the vy-(«, )-semi-open sets, described in [11].

Definition 2.5. Let a: P(X) — P(X) be an m-operator on my and
A C X. Ais called an c-my-semi-open set, if there exist an my-open sct
U C X such that U € A C «(U). The complement of an a-m x-semi-open
set, is called an a-m y-semi-closed set.

We denote by SO(X,my,«) the collection of all a-m x-semi-open sets
of X. Observe that mx C SO(X,myx,«). Also, if mx has the property (B)
of Maki, we obtain that:

O(X,mx,a) Cmyx CSO(X,my,a).

Note that the a-semi-open sets, introduced in [2] by Carpintero et al,
generalize an extense class of sets in terms of which many generalized separa-
tion axioms were described. They constitute a particular case of the previous
definition, when my = 7 and « is an operator associated with a topology .

In general the a-myx-open sets and the c-my-semi-open sets are not
stable for the union. Nevertheless, for certain m-operators, the class of a-
mx-semi open sets are stable under union of sets, like it is demonstrated in
the following lemma.

Lemma 2.1. Let my be an m-structure which satisfy the property
(B) of Maki and let «: P(X) — P(X) be an m-monotone operator on mx.
If 4; € SO(X,mx, ) for each i € 1, then | J;c; A; € SO(X,mx, ).

Proof. Suppose that my has the property (B), « is an m-monotone
operator and 4; € SO(X,mx,a) for each i € I. For each ¢ € I, there
exists a set U; € my such that U; C 4; C «(U;), in consequence, | J;e; Ui C
Uier Ai € Ujer @(Ui). Since « is a monotone operator, then (J;c; a(U;) C
a(User Us); and ;e Ui € mx, because my has the property (B). In con-
sequence, |J;c; Ui € my and Uier Ui € User Ai € a(U;er Ui), therefore
Uiesr 4i € SO(X,mx,a). - O

Definition 2.6. Let my be an m-structure on X and let o be an m-
operator on my. We define the o —m x-closure and the « —m y-semi-closure
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of a set A of X, respectively, as follows:

i) my—sClo(A)={F: ACF X\Fe¢ O(X,myx,a)},
ii) mx —SCla(A)=N{F: ACF,X\F eSO, my, @)}

Observe that if @ = ip(x)y and mx satisty the property (B), then the
above definition is justly the definition of m-closure, described in [1] and [7],

that is;
my — SCla(A4) = mx — CL(A),

and
my — sClg(A) = mx — SCl4(4) = mx — Cl(4).

Also, we can observe that, for any A C X, the my — sCla(A) is an
a — my-closed. But the my — SCl(A) is not necessarily an a — mx-semi
closed set, but according with Lemma 2.1 and the above definition, the
myx —SClq(A) is an o —mx-semi-closed set when mxy has the property (B)
and « is an m-monotone operator.

Note that the condition that « is an m-monotone operator, is not an
artificial condition, because, we can find many operators o : P (X) = P(X)
that satisfying such conditions.

Lemma 2.2. Let mx be an m-structure on X and let «« be an m-
operator on my. For any subsets A and B of X, the following statements
hold:

1. if A C B, then my — sClo(A) € my — sCl «(B).

2. z € my — sCla(A) if and only if U N A # 0 for all o« — mx-open set
U such that x € U; .

3. A is an a — my-closed set if and only if A =mx — sClI alA);

4. my — sCla(mx — sCl(A)) = mx — sCl,(A);

Lemma 2.3. Let my be an m-structure on X and let « be an m-
operator on mx. For any subsets A, B of X, the following statements hold:

1. If A C B, then mx — SCl,(4) C mx — SCl,(B).

2. 2 € my — SCla(A) ifand only if UNA # 0 for all o« — m y-semi open
set U such that z € U.

3. my — SCla(mx — SCl4(A)) = mx — SCla(A);

Also if my satisfies the property (B) and c is monotone, then

4. A is an a — my-semi-closed set if and only if A=mx — SClo(A);

Definition 2.7. Let my be an m-structure on X and let a be an m-
operator on my. A point z € X, is said to be an @ — my-adherent point of
aset A C X if and only if a(U) N A # @ for all U € myx such that z € U.
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The set of all & — m y-adherent points of A is denoted by mx — Cl,(A).
A set A is called (myx, a)-closed if my — Cl,(A) = A. The complement of
an (my, a)-closed set is an (my, a)-open set.

Lemma 2.4. Let my be an m-structure on X and let o be an m-
operator on my; then

myx — SCla(A) Cmy — Cl(A) Cmy — Cla(A) € mx — sCl,(A).

From the last result, follows that:

a — mx-closed set = (myx, «)-closed set = myx — closed set

= a — my-semi-closed set,

or equivalently,
a — my-open set = (my, c:)-open set = mx — open set

= « — my-semi-open set,

when my satisfying the property (B) and « is a monotone operator.
The following definition, generalize the notions of D-sets introduced by
Tong in [12].

Definition 2.8. Let my be an m-structure on X. A subset A C X,
is called an my-Difference set (more precisely an mx-D-set) if there exist
subsets U, V' in my such that U £ X and A=U\V.

Observe that, any my-open set U # X, is an my — D—set, because
trivially U = U \ 0.

Definition 2.9. Let myx be an m-structure on X and let « be an m-
operator on my. A subset A C X, is called an o —m y-generalized closed set
(abbreviated by a — my-sg-closed) if my — sClo(A) C U, whenever A C U

and U is an @ — my-open set.

Definition 2.10. Let myx be an m-structure on X and let a be an m-
operator on mx. A subset A C X, is said to be an o — m x-semi generalized
closed set (abbreviated by « — mx-sg-semi-closed) if my — SCl4(A) C U,
whenever A C U and U is an a — my-semi-open set. ‘

The followings theorems, characterize the o —m x-generalized closed sets
and the o — mx-semi generalized closed sets.
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Theorem 2.1. Let myx be an m-structure on X that satisfies the
property (B) and let « be an m-monotone operator on mx. A C X Is an
a — my-sg-semi-closed set if and only if there are not exist o — m x-semi-
closed set F' such that F' # () and F C my — SCl,(A) \ A.

Proof. Suppose that A is an « — m x-sg-semi-closed and let F' C X be
an « —my-semi-closed set such that FF C my —SCl,(A4)\ A. It follows that,
AC X\ F and X\ F is an o —my-semi open set, since A is an o —m x-sg-
semi-closed, we have that myxy—SCl,(A4) C X\F and F C X\my —SCl,(4).
It follows that

F Cmy —SCly(4A) N (X \'myx —SCl4(A)) =0,

implying that F' = (. Reciprocally, if A C U and U is an o — mx-semi-open
set, then mx —SClo(A)N(X\U) € mx—SClo(A)N(X\A) = mx—SCl,(4)\
A. Since mx — SCl4(A) \ A does not contain subsets o — m y-semi-closed
different from the empty set, we obtain that mx — SCl,(4) N (X \U) =0,
and this implies that mx — SCl,(A) C U in consequence A is an o — mx-
sg-closed. d

In a similar form, we can prove the following characterization.

Theorem 2.2. Let mx be an m-structure on X and let «« be an m-
operator on my. A C X is an a« — mx-sg-closed if and only if there are not
exist a« — my-closed set F such that F' # () and F C mx — sCl,(A) \ A.

3. Separation Properties on m-Structures

In this section, we introduce and study different separation properties on
a set X with an m-structure. We also look for the existent relation between
the different set defined before.

Definition 3.1. Let mx be an m-structure on X. We say that:

1. X is an mx-Ty if for each pair of distinct points z,y € X, there exists
an my-open sets U of X, such that z € U andy ¢ U,ory e U and z ¢ U.

2. X is an my-Ty if for each pair of distinct points z,y € X, there
exists an my-open set of X containing z but not y and an my-open set of
X containing y but not z.

3. X is an mx-T3 if for each pair of distinct points z,y € X, there exist
disjoint m x-open sets U and V such that z € U and y € V.

s ]
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We can see that the collections O(X,my, ) and SO(X,my,a) are m-
structures in the sense of the Definition 2.1. If we take mx as O(X, mx,a)
(respectively SO(X,my,«)), in the Definition 3.1, we obtain separation
properties denoted by (m.y, «)-sT; (respectively (mx, )-STy), for i = 0,1,2.
From Definition 3.1, it is immediate that: )

my =Ty =my —Ti 1, (mx,a) —sT; = (mx,a) —sTi_;  and

(mx,a) = ST; = (mx,a) — ST,_1, fori=1,2.

Definition 3.2. Let my be an m-structure on X and let o be an
m~operator on my. We say that:

' L. X is an (my, a)-Tp if for each pair of distinct points z,y € X, there
exists an mx-open set U of X, such that 2 € U and y ¢ «(U), or y € U and
z ¢ «(U).

. 2. X is an (my, a)-T; if for each pair of distinct points z,y € X, there
exist mx-open sets U and V of X containing z and y, respectively, such that
y & a(U) and z ¢ o(V).

3. X is an (my,a)-T, if for each pair of distinct points z,y € X,
there exist rnx-open sets U and V of X, such that z € U, y € V and
c(U)Na(V) = . (

From Definition 3.2, follows that,
(mx,a) =Ty = (my,a) —=Ty_y, 4=1,2.

Also

(mx,a) = sT; = (my,a) =T = my —T; = (mx, o) — ST},

fori=0,1,2.

It is important to observe that the above definition generalize many of
the well known separation axioms seen in the literature. As we specify.

1. For a = ipcyy and my any m-structure, the properties 6f the
§772,/\',a)-7} are the separation properties described in the Definitions 3.1
for 1 =0,1,2. 2. Let my be any m-structure, p an m-operator on my anci
o« = mxCl, The properties of the (my,a)-T; are the m-Uryshon axioms
introduced in [7]. )

3 For my = 7, o an operator associated with 7, the notions of sepa-
rations described in the above definition are the a-T; notions introduced in

[8].
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4. U my = (o, f) — SO(X,7) and the m-operator  is taken as the
operator 7, then the above definition is just the separation axioms vy — (o, 3)-
T; introduced in [11].

Now we characterize some properties of the m-spaces described above.

Theorem 3.1. Let my be an m-structure on X and let o be an m-~
operator on my. X is an (my,a)-STy if and only if for any pair of distinct
points z, y € X, we have that mx — SCl,({£}) # mx — SCl.({y})-

Proof. Suppose that X is an (mx,@)-STy, then for any pair of distinct
points z, y of X there exists an a — my-semi-open set U such that z €
Uandy ¢ Uory € Uand z ¢ U. It follows from Lemma 2.3, that
my — SCla({z}) # mx — SCla({y})- Reciprocally, if mx — SCla({z}) #
myx — SClo({y}), there exists a point z € mx — SClq({z}) and z ¢ mx —
SCl,({y}), but this implies that, there exists an o — m y-semi-open set U,
such that z € U, and y ¢ U,. Therefore, X is an (mx, a)-STy. C

Theorem 3.2. Let mx be an m-structure on X that satisfies the
property (B) and let a be an m-monotone operator on mx- The following
properties are equivalent:

1. X is an (mx,)-ST.

2. For any = € X, the unitary set {z} is an o — mx-semi-closed set.

3. Each subset A of X is the intersection of all & — m x-semi-open set:
of X containing A.

Proof. (1)=(2). If X is an (mx,)-STi and z € X, then for eact
y € X \ {z}, there exists an o — my-semi-open set Uy, such that y € U,
and z ¢ Uy, follows that U, N {z} = 0, thereforc y € Uy CX\{z} Ir
consequence X \ {z} is an & — mx-semi-open, but this implies that {z} i
an o — my-semi-closed set.

(2)=(3). Observe that forany A C X, A= {44 X\{z}. By hypothesi
each unitary set {z} is an @ — mx-semi-closed set, then each set X \ {z}
with z ¢ A, is an a — mx-semi-open set.

(3)=(1). By hypothesis each unitary set {z} is the intersection of al
a —mx-semi open sets containing {z}. In consequence, for each y # x, ther
exists an @ — m y-semi-open set containing z but not y, follows that Xisa

(mx,()t)-ST]. ’ =

In a similar form as the classical case, but not in a necessarily topologica
context, we have the following separation forms.
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Definition 3.3. Let myx be an m-structure on X and let @ be an m-
operator on my. X is said to be an (my, @)-T' 5 if each o — m x-sg-closed
is an « — my-semi-closed set.

The following theorem, characterizes the m-spaces satisfying the prop-
erty (mx, @)-STy ;.

Theorem 3.3. Let my be an m-structure on X that satisfies the
property (B) and let « be an m-monoctone operator on myx. Then X is an
(mx,a)-STyy if and only if each unitary set {z} in X is an a — my -semi-
open set or an « — my-semi-closed set.

Proof. Sufficiency. Suppose that X7 is an (mx,a)-ST} /2. Then for any
r € X, the unitary set {2} can be o — my-semi-closed set or not. In the
case that {z} is an o — my-semi-closed set, the result follows. In the other
case, X \ {z} is an o —~ my-sg-closed in my. Now using hypothesis, we
obtain that X \ {z} is an o — my-semi-closed set and therefore, {z} is an
o — my-semi-open.

Necessity. Let A be an o —my-sg-closed in my and & € my — SCl,(A).
If {x} is an & — my-semi-open set, then {z} N A # 0 and therefore, z € A.
In the case that {z} is an o — rn x-semi-closed set, then we have that 2 € A,
because if z ¢ A, then {x} C my —sClo(4) \ A. but this is impossible by
Theorem 2.1. ]

As a consequence of the last theorem, we have the following corollary.

Corollary 3.1.  Let myx be an m-structure on X that satisfy the
property (B) and let «« be an m-monotone operator on my. Then X is
an (mx,a)-ST\ s, if and only if each subset A of X is the intersection of
a — my-semi-open set and o — mx-semi-closed set that contain A.

Proof. Sufficiency. Suppose that X is an (mx, «@)-ST 9, since each sub-
set A € X can be written as A = (,,, X \ {z}. Using Theorem 3.3, we
obtain that each A C X is the intersection of sets that are a—m x-semi-open
set or av — m y-semi-closed set that contain A.

Necessity. For each 2 € X, the set X \ {z} can be written as the inter-
sections of & — mx-semi-open set and « — m y-semi-closed set that contain
X\ {z}, then {z} = (J;c;S;. Here each S; C {z} and S; is & — mx-semi-
open set or « — myx-semi-closed set. In consequence, for some j € I, we
obtain that {z} = 5;. It follows that {z} is an o — m y-semi-open set or an
o — my-semi-closed set . ]
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Corollary 3.2. Under the hypothesis of Theorem 3.3, The following
statements hold:

1. (mx,a) = STy = (mx,«) = STp.

2. (mx,a) = 8Ty = (mx,a) — STy,

In analogous form, under flexible conditions on the m-structure and the
m-operator «, we characterize the m-spaces that satisfying the property
(mx,a)-sTy/q, as follows.

Theorem 3.4. Let mx be an m-structure on X and let o be an m-
operator on mx. Then X is an (mx,a)-sTy, if and only if each unitary set
{z} in X is an o — myx-open set or an c — mx-closed set.

Corollary 3.3. Let mx be an m-structure on X and let « be an m-
operator onmx. Then X is an (my, a)-sTy jp if and only if each subset A of
X is the intersection of o —mx-open set and a« —m x-closed set that contain
A.

Definition 3.4. Let mx be an m-structure on X. We say that:

1. X is an myx-Dy if for each pair of distinct points z,y € X, there exists
an my-D-set W of X, such that z € W andy ¢ W,orye W and z ¢ W.

2. X is an my-D; if for each pair of distinct points z,y € X, there
exist mx-D-sets, W and Z in X containing = and y, respectively, such that
y¢Wand z ¢ Z.

3. X is an mx-Dsy if for each pair of distinct points ,y € X, there exist
mx-D-sets, W and Z of X, suchthat z e W,y € Zand WNZ = 0.

If we take my as O(X,m,«) (respectively SO(X,m,a)), in the above
definition, we obtain the following separation properties, denoted by (mx, a)—
sD; (vespectively (mx,a) — SD;) for 1 = 0,1,2. It is immediate that:

myx —D; = mx — Di—1; (mx,a) —sD; = (mx,a) —sD;_y,
(mx,a) = SD; = (mx,a) —SD;_y, fori=1,2.

Also,
myx — 13 = my — D;, for i =0,1,2.

Theorem 3.5. Let mx be an m-structure on X and let « be an m-
operator on mx. Then:

(i) Xis aii mx — Dy if and only if Xis an mx — Tp.

Also, if my satisfies the property (B),

(ii) Xis an my — Dy if and only if Xis an mx — Ds.
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Proof. (i) Necessity. If X is an mx — Dy and x # y, there exist U, V €
my, U # X, such that: z e U\V andy ¢ U\V ory € U\V andz ¢ U\V.
If the case is « € U\ V and y ¢ U\ V, then z € U and = ¢ V. Since
y ¢ U\V, can happen that y ¢ U ory € U and y € V. If the case is y ¢ U
then € U and y ¢ U. In the case that y € U and y € V, we have that
y €V and z ¢ V. A similar result is obtaining if y e U\ V and 2 ¢ U\ V.
From the above, we conclude that X is an my — Tp.

Sufficiency. It is immediate, because all mx-open set different from X,
are my-D-sets.

(ii) Necessity. Suppose that X is an my — Dy and z # y, then there
exist my — D—sets U\ V and U \ V' such that: x €e U\ V,y ¢ U\ 'V,
2 ¢ U\V andy e U \V'. Since x ¢ U \ V' then, it can happen some
of the following cases: ¢ ¢ U orz € U' NV . Ifz ¢ U, sincey ¢ U\ 'V,
we have tl}at: c¢U,y¢Uoraz¢ U,y € UNV. In the first case,
zeU\(U u V), because z € U\ V, and y € U’ \(UUV’L buty e U\ V',
also (U\(U'UV)N(U \(UUV")) = 0. In the second. case, we have z € U\V,
y €V and (U\V)NV =0. Finally ifz € UnvV, thenyeU\V, zeV
and (U \V' )N V' = 0. Therefore in any case,  and y, can be separated by
disjoint my — D—sets, that is, X is an my — Da.

Sufficiency. It is immediate. O

Theorem 3.6. Let my be an m-structure on X and let o : P(X) —
P(X) be an application such that o(U)NV = U Na(V) = 0, for any pair of
my-open sets U and V, U NV = 0. Then:

mx-To = (my,a)-sTy = (mx,a)-sTy

Proof. Suppose that X satisfies the property mx-T3, and z, y two dis-
tinct points in X. It follows that, for each point z € X \ {y}, there exist
my sets U, and Uy, such that z € U,, y € Uy and U, N U, = . Using the
property of «, we have that «(U;) MU, = 0, and we obtain the following
inclusions, «(U;) € X \ U, C X \ {y}, but this implies that X \ {y} is an
a —mx-open set that contain z but not y. Proceeding in a similar form, we
conclude that X \ {z} is an @ — my-open set that contains y, but not z, we
conclude that X is an (my, «)-sTi. Now, using Theorem 3.4, it follows that
(mx,c)-sTy implies (mx, a)-sTp. 0

We can observe, as follows, that there are many situations under which
the hypothesis of Theorem 3.6 are satisfied.
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1. All the generalized forms of closure (Definition 2.5 and Definition 2.6)
on an m-structure are m-operators (in the sense of Definition 2.2) satisfying
the conditions of Theorem 3.6.

2. Let § # Y C X and define an m structure my = {A C X ANY =
¢} U X, the m-operator a(d) = AUY, a is an m-operator that satisfies

“the hypothesis of Theorem 3.6 and o # my-Cl, because a(0) = Y and

myx — CL(0) = 0. -

3. Clearly if « satisfies the hypothesis of Theorem 3.6, any operator 3
with 8 < « also satisfies it. Even more, if & and f satisfying the conditions
of Theorem 3.6, then p(4) = a(A) U B(A) and p(A) = a(A) N B(A) are also
m-operators satisfying the conditions of Theorem 3.6.

In general, the property (mx,a)-sTy does not imply the property mx-
T,. But, under certain conditions on the application a : P(X) — P(X) that
acts on an m-structure on X, the reverse implication is valid, as we can see
in the following theorem.

Theorem 3.7. Let my be an m-structure on X that satisfies the
pro-perty B and let « : P(X) — P(X) be an application that satisfies the
following condition mxCl = «, then: (mx,)-sTy implies mx-T5.

Proof. Suppose that X is an (mx, a)-sTy. For each pair of points z, y
in X, such that = # y, can happen the following cases:

(a) zeU,yg U, or (b) yeU z¢U;

for some o — mx-open set U in X.

In the case (a), there exists a set Uy € mx such that z € U, and
a(U;) € U. By hypothesis mx Cl < «, we have that z € U, € mxCl (U:) C
a(Uz) € U. Follows that, mxCl(Uy) C U, and since y ¢ U we obtain
that y € X \U C X \ mxClL(Uy). Therefore, there exist myx-open sets, Uy
and X \ mxCl(U,) containing 2 and y, respectively, such that Uz N (X \
mxCl(Usg)) = 0.

In a similar form, we can prove the case (b), that is, there exists an
Uy € my such that y € Uy, 7 € X \m,CL(U,) also UyN (X \m;CL(Uy)) = 0,
and we conclude that X is an mx-Ts. 0

Observe that Theorem 4.8 in [1], corresponds to the trivial case, because
mxCl < mxCl.

An immediate consequence of the last two theorems and Theorem 3.3,
is the following corollary.
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Corollary 3.4. Under the hypothesis of Theorems 3.4 and 3.5. The
following properties are equivalent:

1. (X,m) is (my,a) —sDs; 2. (X,m) is (mx,a) — sDy;

3. (X,m) is (mx,a) —sDg; 4. (X,m) is (mx, a)-sTo;

5. (X,m) is (mx,a)-sTy; 6. (X,m) is mx-Ty.

Observe that from the cominents on Theorem 3.9, there are many m-
operators different from my — C'l and my — SCl, satisfying the hypothesis
of Theorems 3.4 and 3.5.

Definition 3.5. Let my be an m-structure on X and let o : P(X) =
P(X) be an m-operator on mx. We say that « is regular respect to mx, if
for each z € X and each U € myx such that z € U, there exists V € my
such that z € V and a(V) C U.

The following theorems characterizes the operators that are regular with
respect to an m-structure my.

Theorem 3.8. Let mx be an m-structure on X and let @ be an m-
operator on my. Then:

« is regular with respect to an my <= mx = {A: A is (mx, a)-open}.

Proof. Sufficiency. Suppose that « is regular with respect to my and
that there exists an my-closed subset F' such that mx — Clo(F) € F. It
follows that, there exists a point z such that z € mx — Cly(F) and = ¢ F;
but this imply that z € X \ F, but X \ F' is an mx-open set. Now using
the hypothesis, there exists V' € my such that ¢ € V and «(V) C X \ F,
therefore (V)N F C (X \ F)N F = (), but this is impossible, because
z € mx — Clo(F). In consequence, all my-closed set is an (myx, )*-closed,
now using Lemma, 2.4, it follows that all (mx, «)*-closed set are mx-closed.

Necessity. If my = {A: Ais an (my,«)-open} and ¢ € X with z € U,
where U € mx, then, we have that © ¢ X\ U = mx — C1(X \ U), therefore,
there exists V' € my for which z € V and a(V) N (X \U) = 0, it follows
that (V) CU. O

Observe that the above theorem generalizes the characterizations of the
regular spaces, in the case when is using the semi regular topology given in
(7).

Theorem 3.9. Let my be an m-structure on X and let a : P(X) —
P(X) be an m-operator on my. If « is regular with respect to mx. Then
the following properties hold:
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1. All myx-open set are c-m x-open set.
2. my — Cla(A) =my — CI(A), forall AC X.

3. For all m-operator : P(X) — P(X) on mx such that § = «,

have:
{A: A is an (mx, §)-open set} = {A: Ais (my,a)-open set} = mx.

Proof. 1. If U € mx, then for all z € U there exists V, € mx such tl
z € V, and a(V,) C U. This implies that U is an a — mx-open set.

2. Suppose that @ ¢ mx — CL(A), it follows that z € X \ mx — CI{(
and X \ mx — Cl(A) € mx, but by hypothesis, there exists V € mx st
that z € V and a(V) € X \ mx — Cl(A), in consequence, aV)NA
(X \mx —Cl(A))NA =0, but it implies that z ¢ mx — Cla(A). Therefg
myx — Cla(A) € my — Cl(A). Now using Lemma 2.4, we obtain the ot.
inclusion. A

3. If & is a regular operator with respect to mx and 8 = «, it follows &.
£ is regular with respect to mx and by Lemma 3.1 the result follows.

We can observe, from the last result, that many separation axioms
separation properties described before are satisfied for a regular m-opersa

on my.
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Resumen

Dado (X, mx) un m-espacio, se introduce el concepto de conjunto
mx-g-cerrado como una generalizacion de las definiciones de varias cla-
ses de conjuntos cerrados generalizados. Se obtiene un nuevo axioma de
separacién, denominado mx — 11,2 y se caracterizan éstos. También se
estudian las relaciones entre los m-espacio mx — T2 y los m-espacio
mx — 1oy mx —1h.
Palabras Claves: mx-estructura, conjunto cerrado generalizado, m-
espacio mx — T%A

Abstract

Given (X, mx) an m-space, we introduce the concept of m x-g-closed
set as a generalization of the definitions of several classes of generalized
closed sets. Also we obtain and characterize a new separaton axiom
called mx — T1/2. Also we study the relations between the m-space
mx — Tl/g and the m-spaces mx — Tp and mx — T1.
Key words and phrases: mx-structure, generalized closed set, m-
space mx — T% .

Introducciéon

Los conjuntos cerrados, semi-cerrados, a-semi-cerrados y (a, 3)-semi-cerrados
han sido utilizados por varios autores para definir diferentes clases de conjun-
tos cerrados generalizados y con estos introducir nuevos axiomas de separa-

cion.
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En 1963, Levine [5] introduce el concepto de conjuntos g-cerrados y en 1991
Ogata [7] define los espacios T} /2, también introduce las nociones de conjuntos
s-g-cerrados y espacios semi-T7 5. En el 2000 Rosas, Carpintero, Vielma y
Salas [12] estudian el concepto de conjuntos a-sg-cerrado y caracterizan los
espacios a-semi-T} /. En el 2005 Rosas, Carpintero y Sanabria [11] definen los
conjuntos (a, (3)-sg-cerrados y estudian los espacios (a, 3)-semi-T} /5.

En este articulo utilizamos la nociéon de estructura minimal mx sobre
un conjunto no vacio X dada por Maki [6] y definimos los conjuntos m x-g-
cerrados como una generalizacién de los conjuntos g-cerrados, sg-cerrado, a-g-
cerrado, a-sg-cerrado y («, 3)-sg-cerrado. También se definen y se caracterizan
los mx — T2 que genera
lizan, de forma natural, a los espacios Ty /5, o — T /3, semi-T} j5, a-semi-T7 /o
y (a, B)-semi-T7 /.

2 Preliminares

Sea X un conjunto no vacio, se dice que a : P(X) — P(X) es un operador
expansivo sobre una familia I' de subconjuntos de X si U C «(U) para todo
U eT. Si(X,7) es un espacio topoldgico y a es un operador expansivo sobre
la topologia 7, entonces diremos que « es un operador asociado a la topologia
7 [3]. Ademas, si a(A4) C a(B) siempre que A C B, entonces decimos que el
operador a es mondtono.

Si (X, 7) es un espacio topolégico, o un operador expansivo sobre la topo-
logia 7 y A es un subconjunto de X, entonces ese dice que A es a-abierto [1] si
para cada = € A existe un abierto U de x tal que a(U) C A. El complemento
de un conjunto a-abierto se denomina a-cerrado, se define la a-clausura de
un subconjunto A de X, abreviada por a — ¢l(A4), como la interseccién de
todos conjuntos a-cerrados que contienen a A. Se prueba que la oo — cl(A) es
un conjunto a-cerrado. Un conjunto A es a-cerrado generalizado, abreviado
por a-g-cerrado, si « — ¢l(A) C U siempre que A C U y U es a-abierto. Todo
conjunto a-cerrado es a-g-cerrado. Se definen los espacios o — T% como aque-
llos espacios en los cuales los conjuntos a-g-cerrado y a-cerrado coinciden,
de modo que X es o — T% si y solo si para todo € X se tiene que {z} es
a-cerrado o a-abierto. La coleccién de todos los subconjuntos a-abierto de X
se denota por 7,

Un subconjunto A de X es a-semi-abierto [12] si existe un conjunto abierto
Uertalque U C A C a(U). El complemento de un conjunto a-semi-abierto
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se denomina a-semi-cerrado. Se define la a-semi-clausura de A, abreviado
por a — scl(A), como la interseccién de todos los conjuntos a-semi-cerrados
que contienen a A; si a es un operador mondtono entonces « — scl(A) es
un conjunto a-semi cerrado. Se dice que A es un conjunto a-semi-cerrado
generalizado, abreviado por a-sg-cerrado, si a — scl(4) C U siempre que
A C U y U es un conjunto a-semi-abierto. Si a es monétono, todo conjunto
a-semi-cerrado es un conjunto a-sg-cerrado. Se dice que X es un espacio
o — semiT% si todo conjunto a-sg-cerrado es a-semi-cerrado, de modo que X
es o — semiT% si y solo si para todo z € X se tiene que {z} es a-semi-cerrado
o a-semi-abierto. La coleccién de todos los subconjuntos a-semi-abierto de X
se denota por o — SO(X). Si 3 es otro operador asociado a T, entonces un
subconjunto A de X es (o, 3)-semi-abierto [11] si para cada z € A existe un
conjunto [-semi-abierto V tal que z € V' 'y (V) C A. El complemento de
un conjunto (a, B)-semi-abierto se denomina (o, 3)-semi-cerrado. Se define la
(a, B)-semi-clausura de A, abreviada por («, 3) — scl(A), como la interseccién
de todos los conjuntos («, 3)-semi-cerrados que contienen a A; se prueba que
(o, B) — scl(A) es un conjunto («, §)-semi-cerrado. Un subconjunto A de X
es un conjunto («, 3)-semi-cerrado generalizado, abreviado («, 3)-sg-cerrado,
si (e, B) — scl(A) C U siempre que A C U y U es un conjunto («a, 3)-semi-
abierto. Todo conjunto (¢, 3)-semi-cerrado es un conjunto («, 3)-sg-cerrado.
Se dice que X es un espacio (a, ) —semiT% si todo conjunto («, 5)-sg-cerrado
es (a, B)-semi-cerrado, de modo que X es («, ) — semiTy si y solo si para
todo = € X se tiene que {z} es (a, §)-semi-cerrado o (a, §)-semi-abierto. La
coleccién de todos los subconjuntos (a, 3)-semi-abierto de X se denota por

(a, B) = SO(X)

3 Estructuras Minimales

En esta seccién se plantea el concepto de estructura minimal [6] y algunas
de sus propiedades. También se define la nocién de m-espaciosmx — 17 y se
caracterizan en funci’on de sus conjuntos unitarios.

Definicién 3.1. [6] Una estructura minimal o una mx-estructura sobre un
conjunto no vacio X, es una familia mx de subconjuntos de X tal que § € mx
y X €mx.

El par (X, mx) formado por un conjunto no vacio X y una mx estructura
sobre X, se denomina m-espacio. Cada elemento de mx se denomina con-
junto mx-abierto y el complemento de un conjunto m x-abierto se denomina
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conjunto mx-cerrado. Si (X, 7) es un espacio topoldgico, a y  son opera-
dores asociados a la topologia entonces las colecciones 7, 7o, o — SO(X) y
(a, B) — SO(X) son mx-estructuras.

Definicién 3.2 ([6]). Sean (X, mx) un m-espacio y A un subconjunto de X,
se define la mx clausura de A, abreviada mx — cl(A), como la interseccién
de todos los conjuntos mx-cerrados que contienen a A, es decir

mX—cl(A):ﬂ{F:FQA,X\FEmX}

Observe que si X \ A € mx, entonces my — cl(A) = A, es decir, si A
es mx-cerrado, entonces mx — cl(A) = A; ademds A C mx — cl(A). Otras
propiedades de mx — cl(A), se enuncian en el siguiente teorema.

Teorema 3.1 ([6]). Sea (X, mx) un m-espacio, A y B subconjuntos de X.
Las siguientes se satisfacen.

1. mx —cl(0) = 0.

2. mx — d(X) = X.

3. 8i A C B, entonces mx — cl(A) C mx — cl(B).
4. mx —cl(AUB) D mx —cl(A) Umx — cl(B).
5. mx —cl(mx — cl(A)) = mx — cl(A).

Teorema 3.2 ([8]). Sea (X,mx) un m-espacio, A un subconjunto de X y
z € X, entonces x € mx — cl(A) si y sélo si UNA# O para todo U € mx tal
que x € U.

Definicién 3.3 ([6]). Si mx es una estructura minimal sobre X tal que la
unién de elementos de myx es un elemento de myx, entonces diremos que myx
satisface la condicién (B) de Maki.

Observe que si mx satisface la condicién (B) de Maki, entonces la inter-
seccién de conjuntos mx-cerrados es un conjunto mx-cerrado y por tanto, si
A C X, entonces mx — cl(A) es un conjunto mx-cerrado.

Teorema 3.3. [6] Sea (X, mx) un m-espacio y A un subconjunto de X. Si
mx satisface la condicién (B) de Maki entonces, A es mx-cerrado si y sélo
simx — cl(A) = A.
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En el teorema anterior, si la condicién (B) de Maki es removida, es posible
tener un m-espacio (X,mx) y un subconjunto A de X para el cual mx —
cl(A) = Ay A no sea un conjunto m x-cerrado, como se observa en el siguiente
ejemplo.

Ejemplo 1. Considere X = {a,b, ¢,d} con la siguiente mx estructura,

mx = {®7X7 {CL}, {b}’ {C}}

Sea A = {e¢,d}. Observe que mx — cl(A) = Ay A no es un conjunto mx-
cerrado.

Definicién 3.4 ([10]). Sea (X, mx) un m-espacio, se dice que X es mx —Tp
si para cada par de puntos distintos z,y € X, existe U € mx tal que x € U
vyyéUoxg¢Uyyel.

Definicién 3.5 ([9]). Se (X, mx) un m-espacio, se dice que X es mx — Th
si para cada par de puntos distintos z,y € X, existen conjuntos disjuntos
U,V € mx que contienen a x e y respectivamente.

Definicién 3.6. Sea (X,myx) un m-espacio, se dice que X es mx — T3 si
para cada par de puntos distintos x,y € X existen conjuntos U,V € mx que
contienen a x e y respectivamente y satisfacen que y ¢ Uy z ¢ V.

Observe que
mx—T2:>mx—T1 :>mX—T().

Los siguientes ejemplos muestran que existen m-espacios que son mx — Ty
pero no mx — 11, y mx — 11 que no son mx — T»

Ejemplo 2. Considere el conjunto de los nimeros reales R con la estructura
minimal

mg = {0,R}U{R\ {z}: z € R}.

R es mg — 11, pues dado z,y € R con = # y, podemos encontrar mg-abiertos
U=R\{y} vV =R\ {z} que contienen a x e y respectivamente y « ¢ V,
y¢U.

Supongamos que R es mg — T3, es decir, para z,y € R con x # y existen
conjuntos U, V' € my disjuntos tales que x € U ey € V. Entonces U = R\{a; }
yV =R\{az} con a; # 'y as # y. Esto significa que UNV = R\ {ay,a2} # 0
lo que implica que R no es mg — T5.
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Ejemplo 3. Consideremos R con la siguiente mp estructura
mr = {0,R} U{[x,00) : x € R}.

R es mg — T pues para z,y € R con x < y, U = [y, 00) es mg-abiertoy « ¢ U
eyeU.

R no es mg — T} pues cualquier mg-abierto U que contenga a x es de la
forma U = [a,00) con a < z y por tanto y € U.

Los teoremas que se enuncian a continuacién caracterizan las nociones de
mx —To ymx —Tl.

Teorema 3.4. Sea (X, mx) un m-espacio, X esmx—Ty si y sdlo si para todo
par de puntos distintos x,y € X se cumple que mx —cl ({z}) # mx —cl ({y}).

Demostracion. Supongamos que X es mx — Ty y sean x,y € X tales que
x # y, entonces existe U € my talquez e Uyy ¢ UoyeUyax¢U. Sin
perdida de generalidad, podemos suponer que existe U € mx tal quex € U y
y ¢ U. Entonces si myx —cl ({z}) = mx —cl ({y}), se tiene v € mx —cl {y})
y por tanto, U N {y} # 0, en contradiccién que y ¢ U. Asi se debe tener
mx —cl({z}) #mx —cl ({y}).

Reciprocamente, sean z,y € X tales que x # y y supongamos que mx —
c ({x}) #mx — cl ({y}), entonces existe z € X tal que z € mx —cl ({z}) v
z ¢ mx —cl ({y}) o viceversa.

Sin perdida de generalidad, podemos suponer que z € mx — cl ({z})
z ¢ mx — cl ({y}), entonces existe V € mx tal que z € Vy Vn{y} =0
VNn{z}#0,esdeciry ¢ VyzeV,esdecir, X es my — Tp.

< <

Teorema 3.5. Sea (X, mx) un m-espacio. Si para cada x € X se tiene que
{z} es mx-cerrado, entonces X es mx — Ty. El reciproco es cierto si mx
satisface la condicion (B) de Maki.

Demostracion. Sean x,y € X tales que = # y, entonces {z} y {y} son con-
juntos mx-cerrados y por lo tanto X \ {y} y X \ {2} son conjuntos mx-
abiertos que contienen a x e y respectivamente y se cumple que y ¢ X \ {y}
y z ¢ X \ {z}, de donde se concluye que X es mx — T}.

Reciprocamente, supongamos que X es mx — 11 y que my satisface la
condicién (B) de Maki. Sea x € X, entonces para cada y € X con x #
y existen conjuntos U,V € mx que contienen a x e y respectivamente y
satisfacen que ¢ V y y ¢ U, es decir, {x} NV = (. Por lo que y ¢ mx —
cl({z}). Por lo tanto, mx — cl({z}) = {a} y como mx satisface la condicién
(B) de Maki, entonces {z} es mx-cerrado. O
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Observe que la condicién (B) de Maki es suficiente para caracterizar los
m-espacios que son mx —717. El siguiente ejemplo nos muestra que el reciproco
del teorema anterior, en general no es cierto si no se le exige la condicién (B)
de Maki a la mx estructura.

Ejemplo 4. Consideremos R con la siguiente mp estructura
mr = {0,R} U {{z} : z € R}.

R es mg — T pues para x # y, {x}, {y} son mg-abiertos que no contienen a
y v x respectivamente. Sin embargo {x} no es mg-cerrado para ningin € R

4 Conjuntos mx-g-Cerrados y my — T%

En esta seccién, utilizando la nocién de mx estructura, se generalizan los
conceptos de conjunto g-cerrado [5], a-g-cerrado [12],a-sg-cerrado [12], («, §)-
sg-cerrado [11] y de espacios T3 [5], @ — T'% [12], a — semi — T3 [12], y
(v, B) — semi — T [11].

Definicién 4.1. Sea (X, myx) un m-espacio, A un subconjunto de X, se dice
que A es un conjunto my-cerrado generalizado, abreviado mx-g-cerrado, si
myx — cl(A) C U siempre que A C U y U € mx.

Si (X, 7) es un espacio topoldgico y o y 3 son operadores asociados a la
topologia, entonces esta definicién coincide con los conceptos de conjuntos g-
cerrados [5], a-g-cerrado[12], («, B)-sg-cerrado[11], cuando la mx estructura
es la coleccion 7,74, (o, 3) — SO(X) respectivamente. Ademds si my satisface
la condicién (B) de Maki, entonces este concepto coincide con la nocién de
conjunto a-sg-cerrado [12], cuando la mx estructura es la coleccién a—SO(X).

Teorema 4.1. Sea (X, mx) un m-espacio, todo conjunto mx-cerrado es mx-
g-cerrado.

Los siguientes ejemplos nos muestran la existencia de conjuntos en un
m-espacios que son mx-g-cerrado que no son mx-cerrado.

Ejemplo 5. Consideremos R con la siguiente mg estructura
mr = {0,R} U {{z} : x € R}.

El conjunto Q de los niimeros racionales es mpg-g-cerrado pues el tnico mp-
abierto que lo contiene es R; pero no es mg-cerrado.
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Ejemplo 6. Consideremos R con la siguiente mp estructura
mg = {0,R} U {[z,00) : x € R}.

el conjunto QQ de los niimeros racionales es un conjunto mg-g-cerrado pues el
tinico mg-abierto que lo contiene es R; pero no es mg-cerrado.

Definicién 4.2. Sea (X,mx) un m-espacio, se dice que X es mx — T3, si

2
todo conjunto m x-g-cerrado es mx-cerrado.

Es de observar que la condicién (B) de Maki no necesariamente la satisfa-
cen los m-espacios que son mx — 1y o mx — 11 o mx — Ts, sin embargo existe
una estrecha relacién entre los m-espacios que son mx — T% y los m~espacios
que satisfacen la condicién (B) de Maki, como se observa en el siguiente teo-
rema.

Teorema 4.2. Sea (X, mx) un m-espacio, si X es myx — T% entonces mx
satisface la condicion (B) de Maki.

Demostracién. Supongamos que mx no satisface la condicién (B) de Ma-
ki, entonces existe una coleccién {Uy, }ocs de conjuntos myx abiertos tal que
UaesUa € mx, luego F = X \Uqe U, 1o es un conjunto mx cerrado. Veamos
que F es un conjunto mx-g-cerrado.

En efecto, sea V € mx tal que F' C V, entonces

mx —c(F) = mx —cl(X \UpesUq)
mx — cl(Naes (X \ Ua))
Nacomx — cl(X \ Uy)
ﬂaeJ(X\Ua)
X\UpesUs =F CV

In

De modo que F' es un conjunto mx-g-cerrado que no es mx-cerrado y por
tanto X no es mX—T%. O

Teorema 4.3. Sea (X, mx) un m espacio y A un subconjunto de X. Si A es
mx -g-cerrado entonces myx —cl(A)\ A no contiene subconjuntos mx -cerrados
no vacios. El reciproco es cierto si mx satisface la condicion (B) de Maks.

Demostracion. Supongamos que A es un conjunto mx-g-cerrado y sea K un
subconjunto mx-cerrado de mx — cl(A) \ A, entonces X \ K es un conjunto
mx-abierto que contiene a A y por tanto mx — cl(A) C X \ K, de modo que
K c (X \'mx —cl(A)) N (mx — cl(A)), de donde se concluye que K = {)
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Reciprocamente, supongamos que mx —cl(A)\ A no contiene subconjuntos
mx-cerrados no vacios y que mx satisface la condicién (B) de Maki. Sea
U € mx tal que A C U, entonces mx — cl(A) N (X \ U) es un conjunto
mx-cerrado y

myxy —c(A)N(X\U) Cmx —c(A)N(X\A) =mx —cl(A)\ 4

por tanto mx — cl(A) N (X \ U) = 0, es decir mx — cl(A) C U de donde se
concluye que A es mx-g-cerrado. O

El siguiente teorema caracteriza los m-espacios myx — T%.

Teorema 4.4. Sea (X, mx) un m-espacio, X es mx — T% sty solo si las
siguientes se satisfacen:

1. Para todo x € X se tiene que {x} es mx-abierto o mx-cerrado.
2. La mx estructura satisface la condicidn (B) de Maksi.

Demostracion. Sea x € X y supongamos que {z} no es mx-cerrado, entonces
X \ {z} no es mx-abierto, de modo que el tinico mx-abierto que contiene a
X \{z} es X, por lo que X \ {z} es trivialmente m x — g-cerrado, por hipdtesis
X es mx — T2, entonces X \ {z} es mx-cerrado y por tanto {z} es mx-
abierto. Por Teorema 4.2 se concluye que mx satisface la condicién (B) de
Maki.

Reciprocamente, sea A un conjunto mx-g-cerrado y * € mx — cl(A),
entonces por hipétesis puede ocurrir

1. {z} sea mx-abierto, entonces {z} N A # () y por tanto = € A; es decir,
myx — cl(A) C A.

2. {z} se mx-cerrado, como A es mx-g-cerrado, entonces my — cl(A4) \ A
no contiene conjuntos mx-cerrados no vacios, entonces x € A; es decir,
myx —cl(A) C A.

En cualquier caso mx — cl(A) = A; como mx satisface la condicién (B) de
Maki, entonces A es mx-cerrado. ]

Existen m-espacios en los cuales los conjuntos unitarios son m x-abiertos
o mx-cerrados y sin embargo el m-espacios X no es mx — T%, tal y como se
muestra en el siguiente ejemplo.
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Ejemplo 7. Considere X = {a,b, c,d} con la siguiente mx estructura,

mx = {0, X, {a},{b},{a,b,d},{a,b,c}}

Observe que los conjuntos unitarios son mx-abiertos o myx cerrados y sin
embargo X no es mx — T%. En efecto, {c,d} es un conjunto mx-g-cerrado
pues el unico mx-abierto que lo contiene es X, y {c,d} no es un conjunto
mx-cerrado.

Los siguientes teoremas muestran la relacién existente entre los m-espacios
1
mx —To, mx —T1 ymx _Ti'
Teorema 4.5. Sea (X, mx) un m-espacio, si X es mx — T2 entonces X
es mx — 1p.

Demostracion. Sean z,y € X con x # y, entonces {x} es mx-abierto o mx-
cerrado.
Si {z} es mx-abierto entonces para V = {z} se tiene que z € Vy y ¢ V.
Si {x} es mx-cerrado, entonces V = X \ {z} es mx-abiertoy x ¢ V' y
y € V. Por tanto X es mx — Tp. O

A continuacién se exhibe un m-espacio que es myx — Ty pero que no es
myx — T%

Ejemplo 8. Consideremos R con la siguiente mp estructura
mr = {0, R} U {[z,0) : € R}.
R es mg — Tp; sin embargo no es mg — 1 2.

Teorema 4.6. Sea (X, mx) un m-espacio, si mx satisface la condicion (B)
de Maki y X es mx — T, entonces X es mx — T o.

Demostracion. Si X es mx —T} y satisface la condicién (B) de Maki, entonces
para todo x € X se tiene que {2} son mx-cerrados y por tanto X es mx —
Ty/. O

El siguiente ejemplo nos muestra un m-espacio que es mx — 7172 pero que
noes myx — 11.
Ejemplo 9. Consideremos R con la siguiente mp estructura
me = {0, R, {a}} U{R\ {2z} : = #a},

donde a es un ndmero real fijo. mg satisface la condicién (B) de Maki y los
unitarios son conjuntos mg-abiertos o mg-cerrado. Por tanto R es mg — T /2;
pero no es mg — T} porque {a} no es mg-cerrado.
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Es de observar que existen m-espacios que son m — T} pero que no son
m — T} /3. Para ello es suficiente encontrar un m-espacio que sea m — Ty pero
que no satisfaga la condicién (B) de Maki

Ejemplo 10. Consideremos R con la siguiente mp estructura
mr = {0,R} U {{z} : z € R}.

R es mg — T1; pero no es mg — T /2. En efecto, Q es mg-g-cerrado pues el
unico mg-abierto que lo contiene es R; pero no es mg-cerrado.
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1. INTRODUCTION

Csészar introduce in [6],[7],[8] and [9] the concept of generalized topology
and associated notions. Later, he introduces the notion of generalized topol-
ogy on a Cartesian product of sets and obtained several properties of it [9]).
Carpintero, Rosas and Sanabria introduced ([4]) a new class of associated op-
erators on the product topology in which each factor of the product space has
an associated operator to the respective topology. In this work, we charac-
terize the finitely inadmissible collections of subsets in the Cartesian product.
Also, we study the Cartesian product of v-compact and the Cartesian prod-
uct of y-semi compact spaces according to [9] and [4]. As a consequence, we
obtain a general framework which allows us to derive in a unified way many
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results about of generalized compactness in the Cartesian product of general-
ized topologies.

2. PRELIMINARY

In this section, we recall some concepts and basic results defined by Csaszar
in [6],[7),[8] and [9].

Let X be a nonempty set and we denote by exp X its power set. A collection
i C exp X of subsets of X is said to be a generalized topology on X (briefly a
GT on X) if ) € p and an arbitrary union of elements of u belongs to p (In
general X ¢ p. If X € p, p is said to be a strong GT on X). The elements of
1 are said to be p-pen set, their complements u-closed sets .

Let B C expX satisfy ) € B. Then all unions of some elements of B
constitute a GT u(B), and B is said to be a base for pu(B).

Given a GT p on X, Csészar ([6], [7]) define mappings i, ¢, : exp(X) —
exp(X) as follows:

A = {Beu: BCA},

Z.N
c, A = {C:X—Cep CDA}

Observe that ¢, A is the largest p-open subset of A, and ¢, A is the smallest
p~closed subset of X containing A. In the following lemmas several properties
of i,, ¢, : exp(X) — exp(X) are considered (see [6, Lemmas 1.1, 1.4]).

Lemma 2.1. The operation i, : exp(X) — exp(X) fulfils:

(i) AC B C X implies i,A Ci,B;
(i) 7, A C A;
(iii) 7,0, A =i, A.

Lemma 2.2. For ¢, : exp(X) — exp(X), we have:

(i) AC B C X implies ¢,A C ¢, B;
(i) c, A C A;
(ili) cpc A = c A

Also, we have the followings characterizations.

Lemma 2.3. Let p be a GT on a set X. Then:

(i) =z € i,A if and only if there exists M € p such that x € M C A;
(ii) = € ¢, A if and only if v € M € p implies M N A # ()
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In [7], Csészar considered several collections of exp X for a given GT p on
X.

—_

) = {A€expX: ACc,i, A},

) = {AeexpX: ACi,c,A},
p) = {AcexpX: ACi,c,i,A},

) {A€expX : ACciuc,Al,
C(p) = {AcexpX: ACcui,AUiuc, A}

When p is a topology on X, the elements of o(u), (respectively m(u), a(p),
B(u), C(u)) are said to be semi-open, (respectively preopen, [3-open, b-open).

According Csészéar ([9]), if K # 0 is an index set, X # 0 for k € K, and
X = Ilgex Xy the Cartesian product of the set X;. Suppose that, for k € K,
i is a given GT on Xj. Let us consider all sets of the form Ilcx M; where
M}, € i and, with the exception of a finite number of indices &, M, = M, .

We denote by B the collection of all these sets, and we define a GT pu = u(B)
having B for base. We call u the product of the GT’s u; and denote it by

Prerpg.

A~ N /N A/
=W N
~— ~— ~— ~— ~—
Q

>

Remark 2.4. Let py be the k'™ projection p, : X — Xj. For a given k and
M, € g, we denote < My, >= plzl(Mk); this is the "slab” in X = e X
where each factor is X, except the k™, which is My. Similarly, for finitely
many indices ki, ...k, in K and sets My, € pg,, ... My, € p,, the subset

< My, > 00N < My, >=p (M) 0o Np (My,) = (M),

i=1

is denoted by < My, ... My, > (see [11]). So, all unions of subsets of the
form < My, ... My, > above defined constitute B for u = Prexpr. Moreover,
if v € M € Pyegpy there exists a subset < My, ... My, >, such that x €<
My, ... My, >C M. Equwalently, if M € Pregpu then M = ;G (I being
a non empty set of indices), where Gi = ;. v, (My), J(i) being a finite
subset of K for alli € I, and M! being a ~.-open set in the r'" factor X,., for
anyr € J(i) andi € 1.

We shall refer to [9] for more details and results concerning the product of
generalized topologies.

3. 7-OPEN AND 7-SEMI OPEN SETS IN G'T’S

In this section, we consider the notion of operator (or operation) on a set, and
the notions of y-open and 7-sets in generalized topology. Also, we introduce a
new class of operation associated with the product of GT’s, in order to obtain
extension of the results given by Carpintero, Rosas and Sanabria (see [5]) in
the framework of GT’s.
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Let X be a nonempty set, and v : exp X — exp X a mapping. We call
v :expX — exp X an operation on X ([5],[9]) if it is monotone (i.e A C B
implies v(A) C v(B)). If both v and +' are operations, then by composition
we can obtain the operation v o+’ (or simply 74 instead 7 o /).

Given a GT p on a set X, we can obtain important special cases of op-
erations when 7 is taken as follows: v = ¢,, v = i,, and its compositions

Y = Culy, 1uCpy LuCplpy, CuluCp.

Considering an operation 7 on the set, Csdszér [6], [8] introduced the notion
of y-open sets. A subset A C X is said to be y-open set, if A C v(A). A
large literature is devoted to ~-open sets if 4 is a GT on X and 7 is taking
as ¢y, (respectively 4,¢,,%,,C.0,,CutuCy OF ¢4y (A) Uiyc,(A)), the collection of
the corresponding v-open sets is o(u), (respectively 7(u), a(p), B(p), C(1)).

The following lemma shows the behavior of v-open sets under the union of
sets.

Lemma 3.1. [6]Let X be a nonempty set and p be a GT on X. Ify:exp X —
exp X is an operation and {A; : i € I} is a collection of vy-open sets in X,

then the union  A; is a y-open set in X.
iel
In a natural way, we can introduce the y-semi open sets.

Definition 3.2. Let X be a nonempty set, u be a GT on X, and v : exp X —
exp X be an operation. A subset A C X is said to be y-semi open set, if
M C A C~(A), for some M € pu.

Now, we introduce the following generalization of the notion of associated
operator to a topology in the GT’s.

Definition 3.3. Let X be a nonempty set and ju be a GT on X. An operation
v :exp X — exp X is said to be associated to p if M C ~v(M), for all M € p.

Observe that for an operation v : exp X — exp X, each v-semi open set is a
~v-open set. In fact, A y-semi open implies that, there exists an u-open set M
such that M C A C y(M). Since vy is monotone, A C v(M) C v(A). In gen-
eral,
~v-open does not implies that y-semi open. However, we have the following
equivalence.

The following example show that y-open set does not y-semi open set.
Example 3.4. Let {a, b, ¢, d}. Define a GT as follows p = {0,{a},{c},
{a,b},{a,c},{a,b,c}}. Let v defined as (M) = ¢, M. Then, we have {b, c} is
")/_
open set but not y-semi open set.
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Theorem 3.5. Let X be a nonempty set, u be a GT on X and v :exp X —
exp X be an operation. Then, A C X is an y-semi open set if and only if A is
an y'-open set, where v := vi,.

Proof. Necessity. Suppose that A is an y-semi open set. Then, we have M C
A C (M) such that M € p. Since v is monotone, we obtain A C y((i,(A)).
Thus, A is an 7 = vi,-open set.

Sufficiency. This is immediate consequence of Definition 3.2, since i,,(A)) is
//l/_
open set.

From Theorem 3.5 and Lemma 3.1, we have Lemma 3.6 as follows:
Lemma 3.6. Let X be a nonempty set and let p a GT on X. Ify:exp X —
exp X be an operation and {A; : i € I} is a collection of vy-semi open sets in
X, then the union  A; is a y-semi open set in X.

iel
Remark 3.7. By the Lemma 3.1 the collection of ~v-open sets is an GT on X.

Similarly, by the Lemma 3.5, the collection of y-semi open sets is an GT on
X.

We now define a class of operations on the product of generalized topologies.

Definition 3.8. Let K # () be an index set. Suppose that, for each k € K py,
are given a GT on X, # () and an operation 7y : exp X — exp X on Xj. An
operation v : exp X — exp X on X = . Xy, is said to be compatible with

{7V trer, if
V(< My, .. My, >) =< Y, (M) o Vi (My,,) >,

for each member < My, ... My, > in the base of i = Preg ik

Let K # () be an index set. Suppose that puy is given a GT on X # 0,
for each k£ € K and considering pt = Pregpp on X = o Xi. Let us write
L =1, C=Cy, i = 1y, and c; = ¢, .

In the following example, we shows important cases of operations on the pro-
duct compatible with the operations on its factors.

Example 3.9. Let be
Vi =k (resp., ik, Crig, ikCr, kCkik, CkirCk).
for each k € K. Then, acoording to Propositions 2.2 and 2.3 in [9]
v = c(resp., i, ci, ic, ici, cic),

18 1n each case an operation on X compatible with the 7,;3.
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By means of class of operations above defined, we can obtain important
relationships between the structure of the y-semi open (resp,. y-open) sets in
the product and the structure of the v;-semi open (resp,. yx-open) sets in each
of its factors X.

Lemma 3.10. Let K # () be an index set. Suppose that, for eachk € K, a GT
wr on X, # 0 and an operation vy, : exp X, — exp X, on Xy, associated to iy,
are given. Suppose that v : exp X — exp X is an operation on X = | . X,
associated to p = Pyegcpu, and compatible with {vi }rer, such that v(0) = 0. If
0 # e A, Ar © Xy, is a y-semi open set in X, then Ay is y,-semi open
set in Xy, for each k € K.

Proof. Suppose that @ # . Ay is a y-semi open set in X. Then there
exists an p-open set M C X such that M C o Ap € v(M). It is clear
that M # () because if M = (. Then 0 # ,_Ar C v(0) = 0, this is
impossible by the hypothesis. Let p;, : X — X be the k" projection. Then
Pe(M) C pr( pex Ar) = Ai. Hence pp(M) C Ay, for each k € K. On the
other hand, for all £k € K we have

M C pe(M) C< pp(M) > .
keK

By hypothesis v is monotone and compatible with {74 }rex. Since py : X — X,
is (u, pug)-open (see [9, Proposition 2.4]), pp(M) € py for all k € K, so we obtain

Ap © (M) S (< pr(M) >) =< 3(pr(M)) > .
keK
This implies that Ay C v (pr(M)) for each k € K.

By the above argument, we see that there exists an y;-open set pp(M) C X,
which satisfies

pr(M) C Ay € vi(pr(M)),
from which we conclude that each Ay is an y,-semi open set in Xj.

Corollary 3.11. Under the hypothesis of Lemma 3.10, if the product —  _ . Ax,
s a nonempty proper subset and y-semi open set of X, then there exists a finite
subset {k1, ks, ..., kn} € K such that the yx-semi open sets Ay are distint from

Xy, for each k € {ky, ko, ..., k,}.
Proof. By hypothesis there exists an p-open set () # M C X such that
MC Ay Cy(M).
keK
Consequently there exists a point € M and a basic set < My, ... My, > in
= Prex g, such that

keK
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It follows that z €< My, ... M, >C ;- Ax. But this implies that X = Ay,
for each k ¢ {kq, ka, ..., kn}.

Theorem 3.12. Let K # () be an index set. Suppose that a GT py, on X, # ()
for each k € K and an operation vy, : exp X — exp X on Xi, associated to jiy,
are given. Suppose that v : exp X — exp X s an operation on X = - X,

associated to p = Pyexpp and compatible with {vy}rex, such that v(0) = .
Then

< Apyy Ay, oo Ak, > is y-semi open < Ay, is Y, -semi open, i =1, ..., n.

Proof. (Sufficience). It follows from Lemma 3.10.

(Necessity)Let Ay, Ar, # Xk, be a yg,-semi open set in Xy, for each i €
{1, 2,..., n}. By hypothesis, there exists u,-open sets My, C X}, such that
My, C Ag, €y, (My,), for i = 1,..., n. Note that from M, C Ay, # Xi,, we
obtain that My, # Xj, for i € {1, 2, ..., n}. Therefore

< Mkl, MkQ, Mkn > C < Akl, AkQ, Akn >
c < lukl(Mk'l)7 :U’kzz(M/m)? /‘Lkn(Mkn) >,

from which we obtain that
< Mk17 MkQ, Mkn >C< Aku AkQ, Akn >C ’7(< Mku MkQ, .. My, >).

n

Thus < Ay,, Aky, ... Ay, > is pu-semi open set.

Remark 3.13. In the Theorem 3.12, we obtain a generalization of the results
proved by Carpintero, Rosas and Sanabria (Lemmas 2.1, 2.2 and Theorem 2.3
m

[4]).  Moreover, the above result implies Proposition 2.7 in [9], proved by
Csdszar under the assumption that every g is strong. Obuiously, in the proof
of the Theorem 3.12 this hypothesis is unnecessary.

Theorem 3.14. Let K # () be an index set. Suppose that, for each k € K, a
GT py, on Xy, # 0 and an operation vy, : exp Xy — exp Xp on Xi, associated
to puy, are given. Suppose that v : exp X — exp X is an operation on X =

were Xk, associated to j1 = Pyegpuy, and compatible with {yi}rerx such that
v(0) = 0, then for all k € K we have:

(i) pi ' (My) is y-semi open in X, if My, is yx-semi open in Xy;
(ii) pr(V) is ye-semi open in Xy, if V' is y-semi open in X .

Proof.
(i) Follows from the Theorem 3.12.

(ii) Suppose that V' is a y-semi open set in .- X;. Then there exists an
y-open set M C .- X, such that M CV C ~y(M). If M =0, then

0 = pe(0) = pp(M) C pr(V) € pr(v(M)) = pr(v(0)) = pr(0) = 0.



3102 C. Carpintero, E. Rosas, O. Ozbakir and J. Salazar
So pi(V) = 0, and trivially pi(V') is y;-semi open in X;. On the other hand, if
M # 0, then M = ,_;G; (I a non empty set of indices) since M is a y-open
set in , p Xi, , where Gy = ;0 p, ' (M]), being J(i) a finite subset of K
for all i € I, and M} be a ~,-open set in the r'* factor X, for any r € J(i)
and ¢ € I. Now, for each i € I, we have that either

(a) exists iy € I such that k ¢ J(iy), or (b) k € J(i) for all i € I.

In case (a), we observe that G, € ,.;G; = M, then pi(Gy,) € pi(M).
But, pp(Gig) = Pl pegin Pr (M) = Xy, because i # r for all r € J(ip).

r

Thus pg(G;,) = Xy, from this and by inclusion M C V| it then follows that
X =pe(1(Gy)) Spe( Gi) = pu(M) Cpi(V) € X,
i€
hence py(V) = Xi. Therefore py(V) is y,-semi open in Xj. In case (b), observe
that
Pe(Gi) = pi( p (M) =My Viel,

reJ(i)

since k € J(7), for all ¢ € I. Then,
(M) =pe( Gi)=  pe(Gi))= M.
i€l i€l i€l

Thus, M! = pi.(M) C pr(V). Observe that

MC  pe(M) C< pp(M) >,
keK
M is a y-open set, py is a (i, ux)-open (see [9, Proposition 2.4]) and v is a
monotone associated operation compatible with {~;}, we obtain that
V C (M) C< w(pe(M)) >=<w(pe( T))) >
icl
In consequence,
pr(V) S (< loe( M) >) = wmlp( - M)
i€l iel

Thus, ;UL C pe(V) C w( jep ME), hence py(V) is a j-semi open set in
Xk

Remark 3.15. In the Theorem 3.13, we obtain extensions of Proposition 2.4 in
9] and Proposition 2.7 in 9], which are particular cases of Theorem 3.12, by
taking y(A) = A, for all A C X, and vy, (Ag) for A C X.
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4. INADMISSIBLE FAMILIES AND PRODUCTS

In this section we summarized some terminology and results concerning
finitely inadmissible families. Also we give characterizations for those finitely
inadmissible families in a Cartesian product of sets.

Recall that a collection A of subsets of a set X # (), is said to be an
inadmissible (or inadequate) [23] if A fails to covers X. A is said to be finitely

inadmissible (or finitely inadequate) family, briefly f.i, if no finite subcollection
of A covers X.

The property of being finitely inadmissible satisfies the following conditions.

Lemma 4.1. [15] Let X be a nonempty set and let A be a nonempty collection
of subsets of X. The following assertions hold:

(i) If A is f.i, then A has finite character;
(i) If A is fi and A C X, then either AU{A} or AU{X \ A} is f.i.

Using the Tukey’s Lemma, or equivalently, the axiom of choice, we obtain
the following result.

Lemma 4.2. Let A be a f.i family of subsets of X. Then:
(i) There exists a f.i family AT of subsets of X such that, A C AT and A"
1s maximal with respect to the partial order
A< A" if and only if A C A,
defined on the class of all f.i families of subsets of X containing A.
(ii) If A¢ A" and A C A, then A’ ¢ A"

Proof.
(i) It is a direct consequence of Tukey’s Lemma, or the axiom of choice (see

[4],[15]).

(ii) If A ¢ AT, from the maximality of AT, it follows that AT U{A} is not f.i.
By the Lemma 4.1, either AT U{A} or ATU{X \ A} is f.i. If AT U{A} is not
fi, then ATU{X\ A} isfi. Since A C A’, then X = AU(X\A) C A'U(X\A).
We have X = A'U (X \ A). In consequence, if A" € AT then AT U{X \ A} is
not f.i, but it is impossible. Thus A’ ¢ A*.

Applying this lemma, we obtain the following result.

Lemma 4.3. Let X be a nonempty set. If A" and A are families of subsets of
X such that, A" C A and each member of A is a superset of some member of
A'. Then, A contains a f.i subfamily if and only if A’ contains a f.1 subfamily

Proof.
(Sufficiency). Suppose that A contains a f.i subfamily B. By hypothesis,
for each B € B, B € A and there exists A’ € A’ such that A’ C B. If
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BT is the maximal f.i family corresponding to the collection B, then we have
A" C B € BC BT from the Lemma 4.1. Thus, A’ C B and B € B. By part
(ii) of the Lemma 3.1, necessarily A’ € B*. Hence there exists A’ € Bt N A,
for all B € B. On the other hand, BT N A’ C Bt and BT is f.i, then BT N A’
is f.i. Therefore B’ = BT N A, thus B C A’ and B’ is f.i.

(Necessity). It is obvious since A’ C A.

Let K # () be an index set. Suppose that a nonempty collection Aj of
subsets of a set X for each k£ € K is given. Now we consider the following
subcollections of Cartesian product . X} of the sets Xj.

i)  ex Ax denotes the collection of all subset V' C | _, X}, such that
there exists k € K and U, € A, for which p,zl(Uk) cV,
ii) ,cx Ak denotes the collection of all subset of Cartesian product . Xj,

whose members are union of sets of the form p, ' (U},), where U, € A, and
ke K.

Trivially . Ar © e Ak, but not necessarily o Ax = cx Ar-
For the collections above defined, using the Lemma 4.3, we obtain the following
result.

Lemma 4.4. ,_, Ay (resp., o Ar) contains a f.i subfamily if and only
if, for some k € K, Ay contains a f.i subfamily.

Proof.

(Sufficiency) Suppose that - Ay contains a f.i family and for each k € K,
the collection A, does not contain any f.i subfamily. By definition of ,_, Ax
and Lemma 4.3, there exists a subcollection C, whose members are of type
p. ' (Ug), with Uy € Ay and k € K, such that C does not contain any finite
subcollection that covers ., Xj. For each k € K, consider

C, = {Uk U, € Ak y p;l(Uk) € C}

Observe that C,, C Ay, and by hypothesis A;, does not contain any f.i subfamily,
so there exists a finite subcollection {Uy,, Uk,, ..., Uk, } of Cx such that X} =
 , Uk,. Then,

n n

Xe=py (Xp)=p ' ( Un)= pp'(U).
keK i=1 i=1
Hence ;o Xp = 7 p; ' (Us), but it is impossible because p; ' (Uy,) € C,
foralle=1,2,...,nand k € K.

(Necessity) Suppose that any subfamily of ,_, A is not fi. For each
k € K and for all subcollection By C Ay, trivially, we have that {p; ' (Uy) :
Uy € By} is a subcollection of . Aj. By hypothesis, there exists a finite



Inadmissible families and product of generalized topologies 3105

subcollection {By,, By,, ..., B} C By, such that . X, = 7, p." (By,)-
From this equality, since py is onto, it follows that

n n n

Xe=pe(  Xp)=p( p;'(Br))= pe(p; (Br))=  Bu,.

keK =1 i=1 i=1

Thus X, = |_, By,, this implies that By is not fi. Therefore Ay does not
contain any f.i subfamily.

In the case of . Ag. Observe that ,_, Ay C ,_x Ax, and by Lemma
4.3,  exAr contains a fi subcollection if and only if ,_, Ax contains a
f.i subcollection. But, by the above proof we conclude that there exists an
collection Ay which contains a f.i subfamily.

In the next theorem, we get the following generalization of Lemma 4.4.

Theorem 4.5. If A C P( ,.X;) and A, C P(Xy), for all k € K, are
collections that satisfying the following conditions:

i) p.'(Ux) €A, YU € Ay, Vk € K,
i) pr(V)e Ay, YW EA keK,

iii) A is stable for the union of sets.

Then, A contains a f.i subfamily if and only if Ay contains a f.i subcollection,
for some k € K

Proof.

(Sufficiency) Suppose that A contains a f.i subfamily B. Then, for any
finite subcollection {By, Bo, ..., By} € B, ,cx X # 1, Bi. Thus, there
exists an element © = (Tp)rex € g Xk such that, x ¢ 7, B;. From
this, it follows that for all element y = (yx)rex € |, Bi, © # y. Hence,

there exists ko € K such that xy, # yk, = Pro(y). Then xp, # pk,(y), for
all y € | B, this implies that xy, & pro( ,_; Bi) = 1 Pk(Bi). In
consequence, Xy, # i Pko(Bi), from which we conclude, by hypothesis ii),

that {pko(Bl)a pko(B2)7 -y Py (Bn)} C Ako is f.1.

(Necessity) Suppose that Ay, k € K, contains a f.i subcollection. By Lemma
4.4, we have that ,_, Aj contains a f.i subcollection. From the hypothesis
i) and iii), it follows that ,_, Ay C B, so B contains a f.i subfamily.

Observe that if A contains a subcollection B, such that B is non-inadmissible
and B is f.i. Following the proof of previous theorem, it easy to see that for
some ko € K, the collection {py,(B) : B € B} C Ay, is f.i. On the other hand
Xko =  BeBPko (B>7 because keK X = BeB B? 50 {pko(B> 1B € B} - Ako
is non-inadmissible and f.i. Conversely, if for some k € K, A, contains a
non-inadmissible and f.i subcollection By. From this, and by hypothesis i), A
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contains a f.i collection B = {p;'(B) : B € By}. Moreover,

Xpe=p, (Xp)=p,'(  B)=  p.(B),
keK BeB;, BeB;,

then B = {p,'(B) : B € By} is non-inadmissible. Thus we get the following
result.

Theorem 4.6. Under the hypothesis of Theorem 4.5, we have
A contains a non inadmissible and f.i subcollection if and only if Ay contains
a non inadmissible and f.1 subcollection, for some k € K.

Remark 4.7. In the above Theorem, if A is a GT on ., Xk, then the con-
dition, A is stable for the union of sets, is unnecessary.

5. COMPACTNESS IN GENERALIZED SPACES AND SOME APPLICATIONS

In this section we introduce a new form of generalized compactness with
respect to a GT on a set. Hence, we obtain a general framework which allows
us to derive in a unified way many recent results, concerning the compactness in
a product of generalized topologies, product of y-compact spaces and product
of y-semi compact spaces.

Csészar [8], was considered the following notion as an analogue of the con-
cept of compactness.

Definition 5.1. Let X be a nonempty set, and v : exp X — exp X be an
operation. X is said to be y-compact space if each cover of X composed of
v-open sets has a finite subcover.

In the following definition, we give another analogue notion of the concept
of compactness.

Definition 5.2. Let X be a nonempty set, u be a GT on X, and vy : exp X —
exp X an operation. X is said to be y-semi compact space if each cover of X
composed of y-semi open sets has a finite subcover.

We introduce in the following definition which is more general notion from
the two definitions above on compactness.

Definition 5.3. Let X be a nonempty set and p be a GT on X. X 1is said to
be p-compact if every f.i collection of p-open subsets of X s inadmissible.

The following characterization constitute a generalized version of the Alexan-
der Lemma, for g-compactness in the context of GT’s.

Theorem 5.4. Let X be a nonempty set, and p = pu(B) a GT on X having
B for base. Then X is u-compact if and only if every f.i collection of subsets
of B s inadmissible.
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By Theorem 4.6, we obtain the following generalized version of the Tychonoff
Theorem for p-compactness in the GT’s.

Theorem 5.5. Let K # () be an index set. Suppose that, for each k € K, a
GT on X, # 0 is given. Suppose that jiis a GT on X = . X # 0, such
that

(1) p;l(Mk) € u, if My, € up. and k € K;
(ii) pr(M) € pg, if M € pp and k € K.

Then, X is p-compact if and only if each X}, is pug-compact.

By Theorem 5.5 and Theorem 3.13, we have the following interesting corol-
lary

Corollary 5.6. Let K # () be an index set. Suppose that, for each k € K, a
GT on X, # 0 is given. Let yu = Prcrpir be the product of the GT’s uy. Then,
X s p-compact if and only if each Xy, is p-compact.

According to the Lemma 3.6, the collection of the y-semi open sets is a GT
on a set X. Moreover, the Theorem 3.14, shows that collection of the v-semi
open sets in a Cartesian product, satisfy the conditions (i) and (ii) in the
Theorem 5.5, if we consider in each of its factor the collection of the ~j-semi
open sets. Thus, we have the next result.

Theorem 5.7. Let K # () be an index set. Suppose that, for each k € K, a
GT on X, # 0 and the operation v, : exp Xy — exp Xy on X}, associated to iy,
are gien. Suppose that v : exp X — exp X is an operation on X = . X,
associated to p = Pregpyp and compatible with {vi}rex, such that v(0) = 0.
Then, X 1s v-semi compact if and only if each Xy is yi-semi compact.

In the above theorem, if we choose the operations v and v in adequate form,
we obtain many different forms of generalized compactness. The following
special cases have been introduced in the literature (see [8],[9]). When ~ is
taken as c,i,, (respectively i,c,,i,cui,,¢,0,C,), the corresponding notion of
~-semi compactness is semi-compactness, (respectively strongly compactness,
a-compactness, [-compactness).

It is easy to see that if v : exp X — exp X is an operationon X = . Xy,
associated to p = Pregpr and compatible with {7 }rer, such that v(0) = 0.
Then ~i, : exp X — exp X is an operation on X =, _. X}, associated to
p = Prexpy, and compatible with {yyix }rek, also vi,(0) = 0. So, by using
Theorem 3.5, we have the following result.

Corollary 5.8.

(i) A nonempty product space is semi compact iff each factor space is semi
compact;
(ii) A nonempty product space is a-compact iff each factor space is a-compact.
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Ganster, Jankovi¢ and Reilly obtain (see [14]) that a topological space (X, 7)
is semi-compact if and only if (X, 7,) is hereditarly compact, using the notion
of hereditarly compact introduced by Stone (see [22]). By this result and the
previous Corollary, we obtain a corollary as follows.

Corollary 5.9. A nonempty product space is hereditarly compact if and only
if each factor space is hereditarly compact.

Remark 5.10. The notions of semi-compactness, a-compactness and heredi-
tarly compact have been studied by many mathematicians in topological spaces
(particular case of a GT). In the literature a few results about product of these
notions are known.
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