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Departamento de Matemáticas, Facultad de Ciencias

Universidad UDO, Cumaná (Venezuela)

Abstract

A bounded linear operator T ∈ L(X) on a Banach space X is said
to satisfy Browder’s theorem if two important spectra, originating from
Fredholm theory, the Browder spectrum and the Weyl spectrum, coin-
cide. This expository article also concerns with an approximate point
version of Browder’s theorem. A bounded linear operator T ∈ L(X)
is said to satisfy a-Browder’s theorem if the upper semi-Browder spec-
trum coincides with the approximate point Weyl spectrum. In this note
we give several characterizations of operators satisfying these theorems.
Most of these characterizations are obtained by using a localized version
of the single-valued extension property of T . This paper also deals with
the relationships between Browder’s theorem, a-Browder’s theorem and
the spectral mapping theorem for certain parts of the spectrum.
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Resumen

Un operador lineal acotado T ∈ L(X) sobre un espacio de Banach
X se dice que satisface el teorema de Browder, si dos importantes es-
pectros, en el contexto de la teoŕıa de Fredholm, el espectro de Browder
y el espectro de Weyl, coinciden. Este art́ıculo expositivo trata con una
versión puntual del teorema de Browder. Un operador lineal acotado
T ∈ L(X) sobre un espacio de Banach X se dice que satisface el teore-
ma de a-Browder si el espectro superior semi-Browder coincide con el
espectro puntual aproximado de Weyl. En este nota damos varias carac-
terizaciones de operadores que satisfacen estos teoremas. La mayoŕı de
estas caracterizaciones se obtienen de versiones localizadas de la pro-
piedad de extensión univaluada de T . Este trabajo también considera
las relaciones entre el teorema de Browder el teorema a-Browder y el
teorema de transformación espectral para ciertas partes del espectro.
Palabras y frases clave: Teoŕıa espectral local, teoŕıa de Fredholm,
teorema de Weyl.

1 Introduction and definitions

If X is an infinite-dimensional complex Banach space and T ∈ L(X) is a
bounded linear operator, we denote by α(T ) := dim kerT , the dimension of
the null space ker T , and by β(T ) := codim T (X) the codimension of the
range T (X). Two important classes in Fredholm theory are given by the
class of all upper semi-Fredholm operators Φ+(X) := {T ∈ L(X) : α(T ) <
∞ and T (X) is closed}, and the class of all lower semi-Fredholm operators
defined by Φ−(X) := {T ∈ L(X) : β(T ) < ∞}. The class of all semi-Fredholm
operators is defined by Φ±(X) := Φ+(X) ∪ Φ−(X), while Φ(X) := Φ+(X) ∩
Φ−(X) defines the class of all Fredholm operators. The index of T ∈ Φ±(X)
is defined by ind (T ) := α(T ) − β(T ). Recall that a bounded operator T is
said bounded below if it is injective and it has closed range. Define

W+(X) := {T ∈ Φ+(X) : indT ≤ 0},
and

W−(X) := {T ∈ Φ−(X) : indT ≥ 0}.
The set of Weyl operators is defined by

W (X) := W+(X) ∩W−(X) = {T ∈ Φ(X) : ind T = 0}.
The classes of operators defined above generate the following spectra. The
Fredholm spectrum (known in literature also as essential spectrum) is defined
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by
σf(T ) := {λ ∈ C : λI − T /∈ Φ(X)}.

The Weyl spectrum is defined by

σw(T ) := {λ ∈ C : λI − T /∈ W (X)},

the Weyl essential approximate point spectrum is defined by

σwa(T ) := {λ ∈ C : λI − T /∈ W+(X)},

and the Weyl essential surjectivity spectrum is defined by

σws(T ) := {λ ∈ C : λI − T /∈ W−(X)}.

Denote by

σa(T ) := {λ ∈ C : λI − T is not bounded below},

the approximate point spectrum, and by

σs(T ) := {λ ∈ C : λI − T is not surjective},

the surjectivity spectrum.
The spectrum σwa(T ) admits a nice characterization: it is the intersection

of all approximate point spectra σa(T +K) of compact perturbations K of T ,
while, dually, σws(T ) is the intersection of all surjectivity spectra σs(T + K)
of compact perturbations K of T , see for instance [1, Theorem 3.65]. From
the classical Fredholm theory we have

σwa(T ) = σws(T ∗) and σwa(T ∗) = σws(T ).

This paper concerns also with two other classical quantities associated with
an operator T : the ascent p := p(T ), i.e. the smallest non-negative integer
p such that ker T p = ker T p+1, and the descent q := q(T ), i.e the smallest
non-negative integer q, such that T q(X) = T q+1(X). If such integers do not
exist we shall set p(T ) = ∞ and q(T ) = ∞, respectively. It is well-known
that if p(T ) and q(T ) are both finite then p(T ) = q(T ), see [1, Theorem 3.3
]. Moreover, 0 < p(λI − T ) = q(λI − T ) < ∞ if and only if λ belongs to the
spectrum σ(T ) and is a pole of the function resolvent λ → (λI − T )−1, see
Proposition 50.2 of [18]. The class of all Browder operators is defined

B(X) := {T ∈ Φ(X) : p(T ) = q(T ) < ∞},
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the class of all upper semi-Browder operators is defined

B+(X) := {T ∈ Φ+(X) : p(T ) < ∞},

while the class of all lower semi-Browder operators is defined

B−(X) := {T ∈ Φ−(X) : q(T ) < ∞}.

Obviously, B(X) = B+(X) ∩B−(X) and

B(X) ⊆ W (X), B+(X) ⊆ W+(X), B−(X) ⊆ W−(X)

see [1, Theorem 3.4].
The Browder spectrum of T ∈ L(X) is defined by

σb(T ) := {λ ∈ C : λI − T /∈ B(X)},

the upper semi-Browder spectrum is defined by

σub(T ) := {λ ∈ C : λI − T /∈ B+(X)},

and analogously the lower semi-Browder spectrum is defined by

σlb(T ) := {λ ∈ C : λI − T /∈ B−(X)}.

Clearly,
σf(T ) ⊆ σw(T ) ⊆ σb(T ),

and
σub(T ) = σlb(T ∗) and σlb(T ) = σub(T ∗).

Furthermore, by part (v) of Theorem 3.65 [1] we have

σub(T ) = σwa(T ) ∪ acc σa(T ), (1)

σlb(T ) = σws(T ) ∪ accσs(T ), (2)

and
σb(T ) = σw(T ) ∪ accσ(T ), (3)

where we write acc K for the set of all cluster points of K ⊆ C.
A bounded operator T ∈ L(X) is said to be semi-regular if it has closed

range and
ker Tn ⊆ T (X) for all n ∈ N.
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The Kato spectrum is defined by

σk(T ) := {λ ∈ C : λI − T is not semi-regular}.

Note that σk(T ) is a non-empty compact subset of C, since it contains the
boundary of the spectrum, see [1, Theorem 1.75]. An operator T ∈ L(X) is
said to admit a generalized Kato decomposition, abbreviated GKD, if there
exists a pair of T -invariant closed subspaces (M, N) such that X = M ⊕N ,
the restriction T |M is semi-regular and T |N is quasi-nilpotent. A relevant
case is obtained if we assume in the definition above that T |N is nilpotent.
In this case T is said to be of Kato type. If N is finite-dimensional then
T is said to be essentially semi-regular. Every semi-Fredholm operator is
essentially semi-regular, by the classical result of Kato, see Theorem 1.62 of
[1]. Recall that T ∈ L(X) is said to admit a generalized inverse S ∈ L(X)
if TST=T. It is well known that T admits a generalized inverse if and only
if both subspaces kerT and T (X) are complemented in X. It is well-known
that every Fredholm operator admits a generalized inverse, see Theorem 7.3
of [1]. A ”complemented” version of Kato operators is given by the Saphar
operators: T ∈ L(X) is said to be Saphar if T is semi-regular and admits a
generalized inverse. The Saphar spectrum is defined by

σsa(T ) := {λ ∈ C : λI − T is not Saphar}.

Clearly, σk(T ) ⊆ σsa(T ), so σsa(T ) is nonempty; for other properties on
Saphar operators see Müller [22, Chapter II, §13].

2 SVEP

There is an elegant interplay between Fredholm theory and the single-valued
extension property, an important role that has a crucial role in local spectral
theory. This property was introduced in the early years of local spectral theory
by Dunford [13], [14] and plays an important role in the recent monographs
by Laursen and Neumann [20], or by Aiena [1]. Recently, there has been a
flurry of activity regarding a localized version of the single-valued extension
property, considered first by [15] and examined in several more recent papers,
for instance [21], [5], and [7].

Definition 2.1. Let X be a complex Banach space and T ∈ L(X). The
operator T is said to have the single valued extension property at λ0 ∈ C
(abbreviated SVEP at λ0), if for every open disc U of λ0, the only analytic
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function f : U → X which satisfies the equation

(λI − T )f(λ) = 0, for all λ ∈ U

is the function f ≡ 0. An operator T ∈ L(X) is said to have SVEP if T has
SVEP at every point λ ∈ C.

The SVEP may be characterized by means of some typical tools of the
local spectral theory, see [8] or Proposition 1.2.16 of [20]. Note that by the
identity theorem for analytic function both T and T ∗ have SVEP at every
point of the boundary ∂σ(T ) of the spectrum. In particular, both T and the
dual T ∗ have SVEP at the isolated points of σ(T ).

A basic result links the ascent, descent and localized SVEP:

p(λI − T ) < ∞⇒ T has SVEP at λ,

and dually
q(λI − T ) < ∞⇒ T ∗ has SVEP at λ,

see [1, Theorem 3.8].
Furthermore, from the definition of localized SVEP it is easy to see that

σa(T ) does not cluster at λ ⇒ T has SVEP at λ, (4)

while
σs(T ) does not cluster at λ ⇒ T ∗ has SVEP at λ.

An important subspace in local spectral theory is the quasi-nilpotent part of
T , namely, the set

H0(T ) := {x ∈ X : lim
n→∞

‖Tnx‖ 1
n = 0}.

Clearly, ker (Tm) ⊆ H0(T ) for every m ∈ N. Moreover, T is quasi-nilpotent
if and only if H0(T ) = X, see [1, Theorem 1.68]. If T ∈ L(X), the analytic
core K(T ) is the set of all x ∈ X such that there exists a constant c > 0
and a sequence of elements xn ∈ X such that x0 = x, Txn = xn−1, and
‖xn‖ ≤ cn‖x‖ for all n ∈ N, see [1] for informations on the subspaces H0(T ),
K(T ). The subspaces H0(T ) and K(T ) are invariant under T and may be not
closed. We have

H0(λI − T ) closed ⇒ T has SVEP at λ,

see [5].
In the following theorem we collect some characterizations of SVEP for

operators of Kato type.
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Theorem 2.2. Suppose that λ0I − T is of Kato type. Then the following
statements are equivalent:

(i) T has SVEP at λ0;

(ii) p(λ0I − T ) < ∞;

(iii) H0(λ0I − T ) is closed;

(iv) σa(T ) does not cluster at λ.

If λ0I−T is essentially semi-regular the statements (i) - (iv) are equivalent
to the following condition:

(v) H0(λ0I − T ) is finite-dimensional.

If λ0I − T is semi-regular the statements (i) - (v) are equivalent to the
following condition:

(vi) λ0I − T is injective.
Dually, the following statements are equivalent:

(vii) T ∗ has SVEP at λ0;

(viii) q(λ0I − T ) < ∞;

(ix) σs(T ) does not cluster at λ.
If λ0I −T is essentially semi-regular the statements (vi) - (viii) are equiv-

alent to the following condition:
(x) K(λI − T ) is finite-codimensional.
If λ0I − T is semi-regular the statements (vii) - (x) are equivalent to the

following condition:
(xi) λ0I − T is surjective.

Remark 2.3. Note that the condition p(T ) < ∞ (respectively, q(T ) < ∞)
implies for a semi-Fredholm that ind T ≤ 0 (respectively, ind T ≥ 0), see [1,
Theorem 3.4]. Consequently, if T has SVEP then λ /∈ σf(T ) then ind (λI −
T ) ≤ 0, while if T ∗ has SVEP then ind (λI − T ) ≥ 0.

Let λ0 be an isolated point of σ(T ) and let P0 denote the spectral projec-
tion

P0 :=
1

2πi

∫

Γ

(λI − T )−1 dλ

associated with {λ0}, via the classical Riesz functional calculus. A classical
result shows that the range P0(X) is N := H0(λ0I − T ), see Heuser [18,
Proposition 49.1], while kerP0 is the analytic core M := K(λ0I−T ) of λ0I−T ,
see [24] and [21]. In this case, X = M ⊕N and

σ(λ0I − T |N) = {λ0}, σ(λ0I − T |M) = σ(T ) \ {λ0},
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so λ0I − T |M is invertible and hence H0(λ0I − T |M) = {0}. Therefore from
the decomposition H0(λ0I−T ) = H0(λ0I−T |M)⊕H0(λ0I−T |N) we deduce
that N = H0(λ0I − T |N), so λ0I − T |N is quasi-nilpotent. Hence the pair
(M, N) is a GKD for λ0I − T .

Corollary 2.4. Let λ0 be an isolated point of σ(T ). Then

X = H0(λ0I − T )⊕K(λ0I − T )

and the following assertions are equivalent:
(i) λ0I − T is semi-Fredholm;
(ii) H0(λ0I − T ) is finite-dimensional;
(iii) K(λ0I − T ) is finite-codimensional.

Proof. Since for every operator T ∈ L(X), both T and T ∗ have SVEP at
any isolated point, the equivalence of the assertions easily follows from the
decomposition X = H0(λ0I − T )⊕K(λ0I − T ), and from Theorem 2.2.

3 Browder’s theorem

In 1997 Harte and W. Y. Lee [16] have christened that Browder’s theorem
holds for T if

σw(T ) = σb(T ),

or equivalently, by (3), if

accσ(T ) ⊆ σw(T ). (5)

Let write iso K for the set of all isolated points of K ⊆ C. To look more closely
to Browder’s theorem, let us introduce the following parts of the spectrum:
For a bounded operator T ∈ L(X) define

p00(T ) := σ(T ) \ σb(T ) = {λ ∈ σ(T ) : λI − T ∈ B(X)},
the set of all Riesz points in σ(T ). Finally, let us consider the following set:

∆(T ) := σ(T ) \ σw(T ).

Clearly, if λ ∈ ∆(T ) then λI − T ∈ W (X) and since λ ∈ σ(T ) it follows that
α(λI − T ) = β(λI − T ) > 0, so we can write

∆(T ) = {λ ∈ C : λI − T ∈ W (X), 0 < α(λI − T )}.
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The set ∆(T ) has been recently studied in [16], where the points of ∆(T ) are
called generalized Riesz points. It is easily seen that

p00(T ) ⊆ ∆(T ) for all T ∈ L(X).

Our first result shows that Browder’s theorem is equivalent to the localized
SVEP at some points of C.

Theorem 3.1. For an operator T ∈ L(X) the following statements are equiv-
alent:

(i) p00(T ) = ∆(T );
(ii) T satisfies Browder’s theorem;
(iii) T ∗ satisfies Browder’s theorem;
(iv) T has SVEP at every λ /∈ σw(T );
(v) T ∗ has SVEP at every λ /∈ σw(T ).

From Theorem 3.1 we deduce that the SVEP for either T or T ∗ entails that
both T and T ∗ satisfy Browder’s theorem. However, the following example
shows that SVEP for T or T ∗ is a not necessary condition for Browder’s
theorem.

Example 3.2. Let T := L ⊕ L∗ ⊕ Q, where L is the unilateral left shift on
`2(N), defined by

L(x1, x2, . . . ) := (x2, x3, · · · ), (xn) ∈ `2(N),

and Q is any quasi-nilpotent operator. L does not have SVEP, see [1, p. 71],
so also T and T ∗ do not have SVEP, see Theorem 2.9 of [1]. On the other
hand, we have σb(T ) = σw(T ) = D, where D is the closed unit disc in C, so
that Browder’ theorem holds for T .

A very clear spectral picture of operators for which Browder’s theorem
holds is given by the following theorem:

Theorem 3.3. [3] For an operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies Browder’s theorem;
(ii) Every λ ∈ ∆(T ) is an isolated point of σ(T );
(iii) ∆(T ) ⊆ ∂σ(T ), ∂σT ) the topological boundary of σ(T );
(iv) int∆(T ) = ∅, int∆(T ) the interior of ∆(T );
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(v) σ(T ) = σw(T ) ∪ iso σ(T ).

(vi ∆(T ) ⊆ σk(T );

(vii) ∆(T ) ⊆ iso σk(T );

(viii) ∆(T ) ⊆ σsa(T );

(ix) ∆(T ) ⊆ iso σsa(T ).

Other characterizations of Browder’s theorem involve the quasi-nilpotent
part and the analytic core of T :

Theorem 3.4. For a bounded operator T ∈ L(X) Browder’s theorem holds
precisely when one of the following statements holds;

(i) H0(λI − T ) is finite-dimensional for every λ ∈ ∆(T );

(ii) H0(λI − T ) is closed for all λ ∈ ∆(T );

(iii) K(λI − T ) is finite-codimensional for all λ ∈ ∆(T ).

Define
σ1(T ) := σw(T ) ∪ σk(T ).

We show now, by using different methods, some recent results of X. Cao,
M. Guo, B. Meng [10]. These results characterize Browder’s theorem through
some special parts of the spectrum defined by means the concept of semi-
regularity.

Theorem 3.5. For a bounded operator the following statements are equiva-
lent:

(i) T satisfies Browder’s theorem;

(ii) σ(T ) = σ1(T );

(iii) ∆(T ) ⊆ σ1(T ),

(iv) ∆(T ) ⊆ iso σ1(T ).

(v) σb(T ) ⊆ σ1(T );

Proof. The equivalence (i) ⇔ (ii) has been proved in [10], but is clear from
Theorem 3.3.

(i) ⇔ (iii) Suppose that T satisfies Browder’s theorem or equivalently, by
Theorem 3.3, that ∆(T ) ⊆ σk(T ). Then ∆(T ) ⊆ σw(T ) ∪ σk(T ) = σ1(T ).
Conversely, if ∆(T ) ⊆ σ1(T ) then ∆(T ) ⊆ σk(T ), since by definition ∆(T ) ∩
σw(T ) = ∅.
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(iii)⇒ (iv) Suppose that the inclusion ∆(T ) ⊆ σ1(T ) holds. We know
by the first part of the proof that this inclusion is equivalent to Browder’s
theorem, or also to the equality σ(T ) = σ1(T ). By Theorem 3.3 we then have

∆(T ) ⊆ isoσ(T ) = iso σ1(T ).

(iv)⇒ (iii) Obvious.
(i) ⇒ (v) If T satisfies Browder’s theorem then σb(T ) = σw(T ) ⊆ σ1(T ).
(v) ⇒ (ii) Suppose that σb(T ) ⊆ σ1(T ). We show that σ(T ) = σ1(T ). It

suffices only to show σ(T ) ⊆ σ1(T ). Let λ /∈ σ1(T ) = σw(T ) ∪ σk(T ). Then
λ /∈ σb(T ), so λ is an isolated point of σ(T ) and α(λI − T ) = β(λI − T ).
Since λ /∈ σk(T ) then λI − T is semi-regular and the SVEP ar λ implies by
Theorem 2.2 that α(λI − T ) = β(λI − T ) = 0, i.e. λ /∈ σ(T ).

By passing we note that the paper by X. Cao, M. Guo, and B. Meng [10]
contains two mistakes. The authors claim in Lemma 1.1 that isoσk(T ) ⊆
σw(T ) for every T ∈ L(X). This is false, for instance if λ is a Riesz point
of T then λ ∈ ∂σ(T ), since λ is isolated in σ(T ), and hence λ ∈ σk(T ), see
[1, Theorem 1.75], so λ ∈ iso σk(T ). On the other hand, λI − T is Weyl and
hence λ /∈ σw(T ).
Also the equivalence: Browder’s theorem for T ⇔ σ(T ) \ σk(T ) ⊆ isoσk(T ),
claimed in Corollary 2.3 of [10] is not corrected, the correct statement is the
equivalence (i) ⇔ (vi) established in Theorem 3.3.

Denote by H(σ(T )) the set of all analytic functions defined on a neigh-
borhood of σ(T ), let f(T ) be defined by means of the classical functional
calculus. It should be noted that the spectral mapping theorem does not hold
for σ1(T ). In fact we have the following result.

Theorem 3.6. [10] Suppose that T ∈ L(X). For every f ∈ H(σ(T )) we
have σ1(f(T )) ⊆ f(σ1(T )). The equality f(σ1(T )) = σ1(f(T )) holds for every
f ∈ H(σ(T )) precisely when the spectral mapping theorem holds for σw(T ),
i.e.,

f(σw(T )) = σw(f(T )) for all f ∈ H(σ(T )).

Note that the spectral mapping theorem for σw(T ) holds if either T or T ∗

satisfies SVEP, see also next Theorem 4.3. This is also an easy consequence
of Remark 2.3.

Theorem 3.7. [10] The spectral mapping theorem holds for σ1(T ) precisely
when ind (λI − T ) · ind (µI − T ) ≥ 0 for each pair λ, µ /∈ σf(T ).

In general, Browder’s theorem for T does not entail Browder’s theorem for
f(T ). However, we have the following result.
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Theorem 3.8. Suppose that both T ∈ L(X) and S ∈ L(X) satisfy Browder’s
theorem, f ∈ H(σ(T )) and p a polynomial. Then we have:

(i) [10] Browder’s theorem holds for f(T ) if and only if f(σ1(T )) = σ1(f(T )).

(ii) [10] Browder’s theorem holds for T ⊕S if and only if σ1(T )∪ σ1(S) =
σ1(T ⊕ S).

(iii) [16] Browder’s theorem holds for p(T ) if and only if p(σw(T )) ⊆
σw(p(T )).

(iv) [16] Browder’s theorem holds for T ⊕S if and only if σw(T )∪σw(S) ⊆
σw(T ⊕ S).

Browder’s theorem survives under perturbation of compact operators K
commuting with T . In fact, we have

σw(T + K) = σw(T ) and σb(T + K) = σb(T ); (6)

the first equality is a standard result from Fredholm theory, while the second
equality is due to V. Rakočević [23]. It is not difficult to extend this result
to Riesz operators commuting with T (recall that K ∈ L(X) is said to be a
Riesz operator if λI −K ∈ Φ(X) for all λ ∈ C \ {0}). Indeed, the equalities
(6) hold also in the case where K is Riesz [23]. An analogous result holds if
we assume that K is a commuting quasi-nilpotent operator, see [16, Theorem
11], since quasi-nilpotent operators are Riesz. These results may fail if K is
not assumed to commute, see [16, Example 12]. Browder’s theorem for T and
S transfers successfully to the tensor product T

⊗
S [17, Theorem 6]. In [16]

it is also shown that Browder’s theorem holds for a Hilbert space operator
T ∈ L(H) if T is reduced by its finite dimensional eigenspaces.

Browder’s theorem entails the continuity of some mappings. To see this,
we need some preliminary definitions. Let (σn) be a sequence of compacts
subsets of C and define canonically its limit inferior by

lim inf σn := {λ ∈ C : there exists λn ∈ σn with λn → λ}.
Define the limit superior of (σn) by

lim sup σn := {λ ∈ C : there exists λnk
∈ σnk

with λnk
→ λ}.

A mapping ϕ, defined on L(X) whose values are compact subsets of C is said
to be upper semi-continuous at T (respectively, lower semi-continuos a T )
provided that if Tn → T , in the norm topology, then lim sup ϕ(Tn) ⊆ ϕ(T )
(respectively, ϕ(T ) ⊆ lim inf ϕ(Tn)). If the map ϕ is both upper and lower
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semi-continuous then ϕ is said to be continuos at T . In this case we write
limn∈N ϕ(Tn) = ϕ(T ). In the following result we consider mappings that
associate to an operator its Browder spectrum or its Weyl spectrum.

Theorem 3.9. [12] If T ∈ L(X) then the following assertions hold:
(i) The map T ∈ L(X) → σb(T ) is continuous at T0 if and only if Brow-

der’s theorem holds for T0.
(ii) If Browder’s theorem holds for T0 then the map T ∈ L(X) → σ(T ) is

continuous at T0.

By contrast, we see now that Browder’s theorem is equivalent to the dis-
continuity of some other mappings. Recall that reduced minimum modulus of
a non-zero operator T is defined by

γ(T ) := inf
x/∈ker T

‖Tx‖
dist(x, kerT )

.

In the following result we use the concept of gap metric, see [19] for details.

Theorem 3.10. [3] For a bounded operator T ∈ L(X) the following state-
ments are equivalent:

(i) T satisfies Browder’s theorem;
(ii) the mapping λ → ker(λI − T ) is not continuous at every λ ∈ ∆(T ) in

the gap metric;
(iii) the mapping λ → γ(λI − T ) is not continuous at every λ ∈ ∆(T );
(iv) the mapping λ → (λI − T )(X) is not continuous at every λ ∈ ∆(T )

in the gap metric.

4 a-Browder’s theorem

An approximation point version of Browder’s theorem is given by the so-
called a-Browder’s theorem. A bounded operator T ∈ L(X) is said to satisfy
a-Browder’s theorem if

σwa(T ) = σub(T ),

or equivalently, by (1), if

acc σa(T ) ⊆ σwa(T ).

Define

pa
00(T ) := σa(T ) \ σub(T ) = {λ ∈ σa(T ) : λI − T ∈ B+(X)},
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and let us consider the following set:

∆a(T ) := σa(T ) \ σwa(T ).

Since λI − T ∈ Wa(X) implies that (λI − T )(X) is closed, we can write

∆a(T ) = {λ ∈ C : λI − T ∈ Wa(X), 0 < α(λI − T )}.

It should be noted that the set ∆a(T ) may be empty. This is, for instance,
the case of a right shift on `2(N). We have

pa
00(T ) ⊆ πa

00(T ) for all T ∈ L(X),

and
pa
00(T ) ⊆ ∆a(T ) ⊆ σa(T ) for all T ∈ L(X).

Theorem 4.1. For a bounded operator T ∈ L(X), a-Browder’s theorem holds
for T if and only if pa

00(T ) = ∆a(T ). In particular, a-Browder’s theorem holds
whenever ∆a(T ) = ∅.

A precise description of operators satisfying a-Browder’s theorem may be
given in terms of SVEP at certain sets.

Theorem 4.2. If T ∈ L(X) the following statements hold:

(i) T satisfies a-Browder’s theorem if and only if T has SVEP at every
λ /∈ σwa(T ).

(ii) T ∗ satisfies a-Browder’s theorem if and only if T ∗ has SVEP at every
λ /∈ σws(T ).

(iii) If T has SVEP at every λ /∈ σws(T ) then a-Browder’s theorem holds
for T ∗.

(iv) If T ∗ has SVEP at every λ /∈ σwa(T ) then a-Browder’s theorem holds
for T .

Since σwa(T ) ⊆ σw(T ), from Theorem 4.2 and Theorem 3.1 we readily
obtain:

a-Browder’s theorem for T ⇒ Browder’s theorem for T,

while

SVEP for either T or T ∗ ⇒ a-Browder’s theorem holds for both T, T ∗. (7)
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Note that the reverse of the assertions (iii) and (iv) of Theorem 3.1 gen-
erally do not hold. An example of unilateral weighted shifts T on `p(N) for
which a-Browder’s theorem holds for T (respectively, a-Browder’s theorem
holds for T ∗) and such that SVEP fails at some points λ /∈ σws(T ) (respec-
tively, at some points λ /∈ σwa(T ) ) may be found in [4].

The implication of (7) may be considerably extended as follows.

Theorem 4.3. [11], [2] Let T ∈ L(X) and suppose that T or T ∗ satisfies
SVEP. Then a-Browder’s theorem holds for both f(T ) and f(T ∗) for every
f ∈ H(σ(T )), i.e. σwa(f(T )) = σub(f(T )). Furthermore,

σws(f(T )) = σlb(f(T )), σw(f(T )) = σb(f(T )),

and the spectral mapping theorem holds for all the spectra σwa(T ), σws(T ) and
σw(T ).

Theorem 4.3 is an easy consequence of the fact that f(T ) satisfies Brow-
der’s theorem and that the spectral mapping theorem holds for the Browder
spectrum and semi-Browder spectra, see [1, Theorem 3.69 and Theorem 3.70].
In general, the spectral mapping theorems for the Weyl spectra σw(T ), σwa(T )
and σws(T ) are liable to fail. Moreover, Browder’s theorem and the spectral
mapping theorem are independent. In [16, Example 6] is given an example of
an operator T for which the spectral mapping theorem holds for σw(T ) but
Browder’s theorem fails for T . Another example [16, Example 7] shows that
there exist operators for which Browder’s theorem holds, while the spectral
mapping theorem for the Weyl spectrum fails.

The following results are analogous to the results of Theorem 3.3, and give
a precise spectral picture of a-Browder’s theorem.

Theorem 4.4. [4], [10] For a bounded operator T ∈ L(X) the following
statements are equivalent:

(i) T satisfies a-Browder’s theorem;
(ii) ∆a(T ) ⊆ iso σa(T );

(iii) ∆a(T ) ⊆ ∂σa(T ), ∂σa(T ) the topological boundary of σa(T );
(iv) σa(T ) = σwa(T ) ∪ σk(T );
(v) ∆a(T ) ⊆ σk(T );
(vi) ∆a(T ) ⊆ iso σk(T );
(vii) ∆a(T ) ⊆ σsa(T );
(viii) ∆a(T ) ⊆ isoσsa(T ).
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We also have:

Theorem 4.5. [3] T ∈ L(X) satisfies a-Browder’s theorem if and only if

σa(T ) = σwa(T ) ∪ isoσa(T ). (8)

Analogously, a-Browder’s theorem holds for T ∗ if and only if

σs(T ) = σws(T ) ∪ isoσs(T ). (9)

The results established above have some nice consequences.

Corollary 4.6. Suppose that T ∗ has SVEP. Then ∆a(T ) ⊆ iso σ(T ).

Proof. We can suppose that ∆a(T ) is non-empty. If T ∗ has SVEP then a-
Browder’ s theorem holds for T , so by Theorem 4.4 ∆a ⊆ isoσa(T ). Moreover,
by Corollary 3.19 of [1] for all λ ∈ ∆a(T ) we have ind(λI − T ) ≤ 0 , so
0 < α(λI − T ) ≤ β(λI − T ), and hence λ ∈ σs(T ). Now, if λ ∈ ∆a(T )
the SVEP for T ∗ entails by Theorem 2.2 that λ ∈ iso σs(T ), and hence λ ∈
iso σs(T ) ∩ isoσa(T ) = iso σ(T ).

Corollary 4.7. Suppose that T ∈ L(X) has SVEP and isoσa(T ) = ∅. Then

σa(T ) = σwa(T ) = σk(T ). (10)

Analogously, if T ∗ has SVEP and iso σs(T ) = ∅, then

σs(T ) = σws(T ) = σk(T ). (11)

Proof. If T has SVEP then a-Browder’s theorem holds for T . Since
iso σa(T ) = ∅, by Theorem 4.4 we have we have ∆a(T ) = σa(T ) \ σwa(T ) = ∅.
Therefore σa(T ) = σwa(T ) and this set coincides with the spectrum σk(T ),
see [1, Chapter 2].

If T ∗ has SVEP and iso σs(T ) = ∅, then iso σa(T ∗) = iso σs(T ) = ∅ and
the first part implies that σa(T ∗) = σwa(T ∗) = σk(T ∗). By duality we then
easily obtain that σs(T ) = σws(T ) = σk(T ).

The first part of the previous corollary applies to a right weighted shift
T on `p(N), where 1 ≤ p < ∞. In fact, if the spectral radius r(T ) > 0
then iso σa(T ) = ∅, since σa(T ) is a closed annulus (possible degenerate), see
Proposition 1.6.15 of [20], so (10) holds, while if r(T ) = 0 then, trivially,
σa(T ) = σwa(T ) = σk(T ) = {0}. Of course, the equality (11) holds for any
left weighted shift. Corollary 4.7 also applies to non-invertible isometry, since
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for these operators we have σa(T ) = {λ ∈ C : |λ| = 1}, see [20].

As in Theorem 3.4, some characterizations of operators satisfying a-Browder’s
theorem may be given in terms of the quasi-nilpotent part H0(λI − T ).

Theorem 4.8. For a bounded operator T ∈ L(X) the following statements
are equivalent:

(i) a-Browder’s theorem holds for T .
(ii) H0(λI − T ) is finite-dimensional for every λ ∈ ∆a(T ).
(iii) H0(λI − T ) is closed for every λ ∈ ∆a(T ).

Note that in Theorem 4.8 does not appear a characterization of a-Browder’s
theorem in terms of the analytic core K(λI−T ), analogous to that established
in Theorem 3.4. The authors in [4] have proved only the following implication:

Theorem 4.9. If K(λI − T ) is finite-codimensional for all λ ∈ ∆a(T ) then
a-Browder’s theorem holds for T .

It would be of interest to prove whenever the converse of the result of
Theorem 4.9 holds.

Define
σ2(T ) := σwa(T ) ∪ σk(T ).

Note that

σ2(f(T )) ⊆ f(σ2(T )) for all f ∈ H(σ(T )),

see Lemma 3.5 of [10]. A necessary and sufficient condition for the spectral
mapping for σ2(T ) is given in the next result.

Theorem 4.10. [10] The spectral mapping theorem holds for σ2(T ) precisely
when ind (λI −T ) · ind (µI −T ) ≥ 0 for each pair λ, µ ∈ C such that λI −T ∈
Φ+(X) and µI − T ∈ Φ−(X).

Using the spectral mapping theorem for σa(T ), see Theorem 2.48 of [1], it
is easy to derive the following result analogous to that established in Theorem
3.8

Theorem 4.11. [10] [12] Suppose that both T ∈ L(X) and S ∈ L(X) satisfy
a-Browder’s theorem and f ∈ H(σ(T )). Then we have:

(i) a-Browder’s theorem holds for f(T ) if and only if f(σ2(T )) = σ2(f(T )).
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(ii) a-Browder’s theorem holds for the direct sum T ⊕ S if and only if
σ2(T ) ∪ σ2(S) = σ2(T ⊕ S).

(iii) a-Browder’s theorem holds for the direct sum T ⊕ S if and only if
σwa(T ) ∪ σwa(S) = σwa(T ⊕ S).

Also a-Browder’s theorem survives under perturbation of Riesz operators
K commuting with T , where T satisfies a-Browder’s theorem. In fact, we
have

σwa(T + K) = σwa(T ), σub(T + K) = σub(T ),

see [23]. Similar equalities hold for quasi-nilpotent perturbations Q commut-
ing with T , so that a-Browder’s theorem holds for T + Q.

Note that a-Browder’s theorem transfers successfully to p(T ), p a polyno-
mial, if we assume that p(σwa(T )) = σwa(p(T )). In fact, we have:

Theorem 4.12. [12] If the map T ∈ L(X) → σwa(T ) is continuous at T0

then a-Browder’s theorem holds for T0. Furthermore, if a-Browder’s theorem
holds for T and p is a polynomial then a-Browder’s theorem holds for p(T ) if
and only if p(σwa(T )) = σwa(p(T )).

We conclude by noting that, as Browder’s theorem, a-Browder’s theorem
is equivalent to the discontinuity of some mappings.

Theorem 4.13. [4] For a bounded operator T ∈ L(X) the following state-
ments are equivalent:

(i) T satisfies a-Browder’s theorem;

(ii) the mapping λ → ker(λI − T ) is not continuous at every λ ∈ ∆a(T )
in the gap metric;

(iii) the mapping λ → γ(λI − T ) is not continuous at every λ ∈ ∆a(T );

(iv) the mapping λ → (λI − T )(X) is not continuous at every λ ∈ ∆a(T )
in the gap metric.
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Abstract. The left Drazin spectrum and the Drazin spectrum coincide with
the upper semi-B-Browder spectrum and the B-Browder spectrum, respec-
tively. We also prove that some spectra coincide whenever T or T ∗ satisfies
the single-valued extension property.

1. Introduction and preliminaries

Throughout this note L(X) will denote the algebra of all bounded linear op-
erators acting on an infinite-dimensional complex Banach space X. The operator
T ∈ L(X) is said to be upper semi-Fredholm if its kernel ker T is finite-dimensional
and the range T (X) is closed, while T ∈ L(X) is said to be lower semi-Fredholm if
T (X) is finite-codimensional. If either T is upper or lower semi-Fredholm, then T
is said to be a semi-Fredholm operator, while T is said to be a Fredholm operator
if it is both upper and lower semi-Fredholm. If T ∈ L(X) is semi-Fredholm, the
classical index of T is defined by ind (T ) := dim ker T − codimT (X).

The concept of semi-Fredholm operators has been generalized by Berkani ([9],
[13] and [11]) in the following way: for every T ∈ L(X) and a nonnegative integer
n let us denote by T[n] the restriction of T to Tn(X) viewed as a map from the
space Tn(X) into itself (we set T[0] = T ). T ∈ L(X) is said to be semi-B-Fredholm,
(resp. B-Fredholm, upper semi-B-Fredholm, lower semi-B-Fredholm,) if for some
integer n ≥ 0 the range Tn(X) is closed and T[n] is a semi-Fredholm operator (resp.
Fredholm, upper semi-Fredholm, lower semi-Fredholm). In this case T[m] is a semi-
Fredholm operator for all m ≥ n ([13]). This enables one to define the index of a
semi-B-Fredholm operator as ind T = ind T[n].

A bounded operator T ∈ L(X) is said to be a Weyl operator if T is a Fredholm
operator having index 0. A bounded operator T ∈ L(X) is said to be B-Weyl if for
some integer n ≥ 0 the range Tn(X) is closed and T[n] is Weyl. The Weyl spectrum
and the B-Weyl spectrum are defined, respectively, by

σw(T ) := {λ ∈ C : λI − T is not Weyl}
and

σbw(T ) := {λ ∈ C : λI − T is not B-Weyl}.
Recall that the ascent of an operator T ∈ L(X) is defined as the smallest non-
negative integer p := p(T ) such that ker T p = ker T p+1. If such an integer does not
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exist, we put p(T ) = ∞. Analogously, the descent of T is defined as the smallest
nonnegative integer q := q(T ) such that T q(X) = T q+1(X), and if such an integer
does not exist, we put q(T ) = ∞. It is well known that if p(T ) and q(T ) are both
finite, then p(T ) = q(T ); see [1, Theorem 3.3]. Moreover, if λ ∈ C, the condition
0 < p(λI − T ) = q(λI − T ) < ∞ is equivalent to saying that λ is a pole of the
resolvent. In this case λ is an eigenvalue of T and an isolated point of the spectrum
σ(T ); see [17, Prop. 50.2].

The concept of Drazin invertibility [14] has been introduced in a more abstract
setting than operator theory [14]. In the case of the Banach algebra L(X), T ∈
L(X) is said to be Drazin invertible (with a finite index) precisely when p(T ) =
q(T ) < ∞ and this is equivalent to saying that T = T0 ⊕ T1, where T0 is invertible
and T1 is nilpotent; see [19, Corollary 2.2] and [18, Prop. A]. Every B-Fredholm
operator T admits the representation T = T0 ⊕ T1, where T0 is Fredholm and T1 is
nilpotent [11], so every Drazin invertible operator is B-Fredholm.

The concept of Drazin invertibility for bounded operators may be extended as
follows.

Definition 1.1. T ∈ L(X) is said to be left Drazin invertible if p := p(T ) < ∞
and T p+1(X) is closed; while T ∈ L(X) is said to be right Drazin invertible if
q := q(T ) < ∞ and T q(X) is closed.

It should be noted that the condition q = q(T ) < ∞ does not entails that T q(X)
is closed; see Example 5 of [21]. Clearly, T ∈ L(X) is both right and left Drazin
invertible if and only if T is Drazin invertible. In fact, if 0 < p := p(T ) = q(T ),
then T p(X) = T p+1(X) is the kernel of the spectral projection associated with the
spectral set {0}; see [17, Prop. 50.2].

The left Drazin spectrum is then defined as

σld(T ) := {λ ∈ C : λI − T is not left Drazin invertible},
the right Drazin spectrum is defined as

σrd(T ) := {λ ∈ C : λI − T is not right Drazin invertible},
and the Drazin spectrum is defined as

σd(T ) := {λ ∈ C : λI − T is not Drazin invertible}.
Obviously, σd(T ) = σld(T ) ∪ σrd(T ).

A bounded operator T ∈ L(X) is said to be Browder (resp. upper semi-Browder,
lower semi-Browder) if T is Fredholm and p(T ) = q(T ) < ∞ (resp. T is upper
semi-Fredholm and p(T ) < ∞, T is lower semi-Fredholm and q(T ) < ∞). Every
Browder operator is Weyl and hence, if

σb(T ) := {λ ∈ C : λI − T is not Browder}
denotes the Browder spectrum of T , then σw(T ) ⊆ σb(T ). In the sequel by σusb(T )
we shall denote the upper semi-Browder spectrum of T defined by

σusb(T ) := {λ ∈ C : λI − T is not upper semi-Browder}.
Clearly, every bounded below operator T ∈ L(X) (T injective with closed range)
is upper semi-Browder, while every surjective operator is lower semi-Browder. The
classical approximate point spectrum of T will be denoted by σa(T ) while by σs(T )
we shall denote the surjectivity spectrum of T .
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It is natural to extend the concept of semi-Browder operators as follows: A
bounded operator T ∈ L(X) is said to be B-Browder (resp. upper semi-B-Browder,
lower semi-B-Browder) if for some integer n ≥ 0 the range Tn(X) is closed and
T[n] is Browder (resp. upper semi-Browder, lower semi-Browder). The respective
B-Browder spectra are denoted by σbb(T ), σusbb(T ) and σlsbb(T ).

The main result of this paper establishes that T ∈ L(X) is B-Browder (re-
spectively, upper semi-B-Browder, lower semi-Browder) if and only if T is Drazin
invertible (respectively, left Drazin invertible, right Drazin invertible); consequently
σbb(T ) = σd(T ), σubb(T ) = σld(T ) and σlbb(T ) = σrd(T ). We also prove that many
of the spectra before introduced coincide whenever T , or its dual T ∗, satisfies the
single-valued extension property.

2. SVEP and semi-B-Browder spectra

A useful tool in the Fredholm theory is given by the localized single-valued
extension property. This property has an important role in local spectral theory;
see the recent monographs by Laursen and Neumann [20] and Aiena [1].

Definition 2.1. Let X be a complex Banach space and T ∈ L(X). The operator
T is said to have the single-valued extension property at λ0 ∈ C (abbreviated SVEP
at λ0) if for every open disc D of λ0, the only analytic function f : U → X that
satisfies the equation (λI − T )f(λ) = 0 for all λ ∈ D is the function f ≡ 0. An
operator T ∈ L(X) is said to have SVEP if T has SVEP at every point λ ∈ C.

Evidently, T ∈ L(X) has SVEP at every point of the resolvent ρ(T ) := C\σ(T ).
Moreover, from the identity theorem for analytic functions it is easily seen that T
has SVEP at every point of the boundary ∂σ(T ) of the spectrum. In particular, T
has SVEP at every isolated point of the spectrum. Note that the localized SVEP
is inherited by the restriction to closed invariant subspaces; i.e., if T has SVEP
at λ0 and M is a closed T -invariant subspace of X, then T |M has SVEP at λ0.
Moreover, the set Σ(T ) of all points λ ∈ C such that T does not have SVEP at λ is
an open set contained in the interior of the spectrum of T . Consequently, if T has
SVEP at each point λ of an open punctured disc D \ {λ0} centered at λ0, then T
also has SVEP at λ0.

We have

(1) p(λI − T ) < ∞ ⇒ T has SVEP at λ,

and dually,

(2) q(λI − T ) < ∞ ⇒ T ∗ has SVEP at λ;

see [1, Theorem 3.8]. Furthermore, from the definition of localized SVEP it is easily
seen that

(3) σa(T ) does not cluster at λ ⇒ T has SVEP at λ,

and dually,

(4) σs(T ) does not cluster at λ ⇒ T ∗ has SVEP at λ.

Remark 2.2. The implications (1), (2), (3) and (4) are actually equivalences if T is
a semi-Fredholm operator; see [5] or [1, Chapter 3].
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Lemma 2.3. If T ∈ L(X) and p = p(T ) < ∞, then the following statements are
equivalent:

(i) there exists n ≥ p + 1 such that Tn(X) is closed;
(ii) Tn(X) is closed for all n ≥ p.

Proof. Define c′i(T ) := dim(ker T i/ kerT i+1). Clearly, p = p(T ) < ∞ entails that
c′i(T ) = 0 for all i ≥ p, so ki(T ) := c′i(T )−c′i+1(T ) = 0 for all i ≥ p. The equivalence
then easily follows from [21, Lemma 12]. �

Define

∆(T ) := {n ∈ N : m ≥ n, m ∈ N ⇒ Tn(X) ∩ ker T ⊆ Tm(X) ∩ ker T}.
The degree of stable iteration is defined as dis(T ) := inf ∆(T ) if ∆(T ) �= ∅, while
dis(T ) = ∞ if ∆(T ) = ∅.
Definition 2.4. T ∈ L(X) is said to be quasi-Fredholm of degree d if there exists
d ∈ N such that:

(a) dis(T ) = d,
(b) Tn(X) is a closed subspace of X for each n ≥ d,
(c) T (X) + ker T d is a closed subspace of X.

It should be noted that by Proposition 2.5 of [13] every semi-B-Fredholm oper-
ator is quasi-Fredholm.

Theorem 2.5. For every T ∈ L(X) the following statements are equivalent:
(i) T is left Drazin invertible;
(ii) There exists n ∈ N such that Tn(X) is closed and T[n] is bounded below;
(iii) T is semi-B-Fredholm and T has SVEP at 0.

Dually, if T ∈ L(X) the following statements are equivalent:
(iv) T is right Drazin invertible;
(v) there exists n ∈ N such that Tn(X) is closed and T[n] is onto;
(vi) T is semi-B-Fredholm and T ∗ has SVEP at 0.

Proof. (i) ⇔ (ii) Suppose that T is left Drazin invertible. Then p = p(T ) < ∞
and T p+1(X) is closed. From Lemma 2.3 it follows that T p(X) is closed. By [1,
Lemma 3.2] we have ker T ∩T p(X) = ker T[p] = {0}, so T[p] is injective. The range
of T[p] is closed, since it coincides with T p+1(X); hence T[p] is bounded below, so
the condition (ii) is satisfied.

Conversely, suppose that there exists n ∈ N such that Tn(X) is closed and T[n]

is bounded below. Let us consider an element x ∈ ker Tn+1. Clearly, T (Tnx) = 0
so Tnx ∈ ker T . Since Tnx ∈ Tn(X) it then follows that Tnx ∈ ker T ∩ Tn(X) =
ker T[n] = {0}; thus x ∈ ker Tn. Therefore, ker Tn+1 = ker Tn, so T has finite
ascent p := p(T ) ≤ n. The range of T[n] is the closed subspace Tn+1(X), with
p + 1 ≤ n + 1. Therefore T p+1(X) is closed; thus T is left Drazin invertible.

(ii) ⇔ (iii) Assume (i) or equivalently (ii). Then T has SVEP at 0, since p(T ) <
∞ and T[n] is upper semi-Fredholm, so T is upper semi-B-Fredholm.

Conversely, suppose that T is semi-B-Fredholm and T has SVEP at 0. By
Proposition 3.2 of [10] if T quasi-Fredholm, in particular if T is semi-B-Fredholm,
then there exists n ∈ N such that Tn(X) is closed and T[n] is semi-regular (i.e., it
has closed range and its kernel is contained in the range of each iterate of T[n]).
Since the restriction T[n] has SVEP at 0, from Theorem 2.49 of [1] it then follows
that T[n] is bounded below.
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(iv) ⇔ (v) If q := q(T ) < ∞, then T (T q(X)) = T q+1(X) = T q(X), so T[q]

is onto. Moreover, T q(X) is closed by assumption. Conversely, if (v) holds, then
Tn+1(X) = Tn(X) so q := q(T ) ≤ n. Obviously, T q(X) = Tn(X) is closed.

(v) ⇔ (vi). Assume (v), or equivalently (iv). Since q := q(T ) < ∞, then T ∗ has
SVEP at 0 and, clearly, T[n] is lower semi-Fredholm, so (vi) holds. The opposite
implication has been proved in [2, Theorem 2.7]. �
Corollary 2.6. T ∈ L(X) is Drazin invertible if and only if T is semi-B-Fredholm
and both T and T ∗ have SVEP at 0.

The condition that T , or T ∗, has SVEP at 0 for semi-B-Fredholm operators,
more generally for quasi-Fredholm operators, may be characterized as follows:

Theorem 2.7. [2] Suppose that T ∈ L(X) is quasi-Fredholm. Then the following
statements are equivalent:

(i) T has SVEP at 0;
(ii) σa(T ) does not cluster at 0.
Dually, if T ∈ L(X) is quasi-Fredholm, then the following statements are equiv-

alent:
(iii) T ∗ has SVEP at 0;
(iv) σs(T ) does not cluster at 0.

Given n ∈ N let us denote by ̂Tn : X/ ker Tn → X/ ker Tn the quotient map
defined canonically by ̂Tn x̂ := ̂Tx for each x̂ ∈ ̂X := X/ ker Tn, where x ∈ x̂.

Lemma 2.8. Suppose that T ∈ L(X) and Tn(X) is closed for some n ∈ N. If T[n]

is upper semi-Fredholm, then ̂Tn is upper semi-Fredholm and ind ̂Tn = ind T[n].
Analogous statements hold if T[n] is assumed to be lower semi-Fredholm, Weyl,
upper or lower semi-Browder, respectively.

Proof. The operator [Tn] : X/ ker Tn → Tn(X) defined by

[Tn]x̂ = Tnx, where x ∈ x̂,

is a bijection, and it easy to check that [Tn] ̂Tn = T[n][Tn], from which the statements
follow. �
Theorem 2.9. Suppose that T ∈ L(X). Then the following equivalences hold:

(i) T is upper semi-B-Browder if and only if T is left Drazin invertible.
(ii) T is lower semi-B-Browder if and only if T is right Drazin invertible.
(iii) T is B-Browder if and only if T is Drazin invertible.

Proof. (i) Trivially, every bounded below operator is upper semi-Browder. By
Theorem 2.5 if T is left Drazin invertible, then T is upper semi-B-Browder.

Conversely, suppose that T is upper semi-B-Browder. By Lemma 2.8, then ̂Tn

is upper semi-Browder for some n ∈ N and hence by Remark 2.2 the condition
p( ̂Tn) < ∞ is equivalent to saying that σa( ̂Tn) does not cluster at 0. Let D(0, ε) be
an open ball centered at 0 such that D(0, ε)\{0} does not contain points of σa( ̂Tn),
so

(5) ker (λI − ̂Tn) = {0} for all 0 < |λ| < ε.

Since the restriction T | ker Tn is nilpotent we also have that D(0, ε) \ {0} ⊆
ρ(T | ker Tn), ρ(T | ker Tn) the resolvent of T | ker Tn, so

(6) (λI − T )(ker Tn) = ker Tn for all 0 < |λ| < ε.
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Since for all 0 < |λ| < ε we also have ker (λI − T | kerTn) = {0}, it then easily
follows that ker (λI − T ) = {0}, i.e. λI − T is injective for all 0 < |λ| < ε.

We show now that (λI − T )(X) is closed for all 0 < |λ| < ε.
Set X̂ := X/ ker Tn and let w ∈ (λI − T )(X) be arbitrary. Then there exists

x ∈ X such that w = (λI − T )x and hence ŵ = (λI − ̂Tn)x̂ ∈ (λI − ̂Tn)(X̂).
Since λ /∈ σa( ̂Tn), then (λI − ̂Tn)(X̂) is closed, and hence there exists a sequence
(wn) ⊂ X such that (λI − ̂Tn)ŵn → ŵ as n → +∞; thus

(λI − T )wn − w → zn ∈ ker Tn.

From (6) we know that there exists yn ∈ ker Tn such that zn = (λI − T )yn, and
hence

(λI − T )wn − (λI − T )yn = (λI − T )(wn − yn) → w,

so that (λI −T )(X) is closed. We have shown that λI −T is bounded below for all
0 < |λ| < ε and, consequently, 0 is an isolated point of σa(T ). This implies that T
has SVEP at 0 and since by assumption T is upper semi-B-Browder from Theorem
2.5, we then conclude that T is left Drazin invertible.

(ii) By Theorem 2.5, if T is right Drazin invertible, then there exists n ∈ N such
that T[n] is onto and hence lower semi-Browder.

Conversely, suppose that T is lower semi-B-Browder and let n ∈ N such that T[n]

is lower semi-Browder. By Lemma 2.8, then ̂Tn is lower semi-Browder and hence
the condition q( ̂Tn) < ∞ is equivalent to saying that σs( ̂Tn) does not cluster at 0.
Let D(0, ε) be an open ball centered at 0 such that D(0, ε) \ {0} does not contain
points of σs( ̂Tn). As in the proof of part (i) we have (λI −T )(ker Tn) = ker Tn for
all 0 < |λ| < ε. We show that (λI − T )(X) = X for all 0 < |λ| < ε. Since λI − ̂Tn

is onto, for each x ∈ X there exists y ∈ X such that (λI − ̂Tn)ŷ = x̂ and hence

x − (λI − T )y ∈ ker Tn = (λI − T )(ker Tn).

Consequently, there exists z ∈ ker Tn such that x − (λI − T )y = (λI − T )z, from
which it follows that

x = (λI − T )(z + y) ∈ (λI − T )(X).

We have proved that λI − T is onto for all 0 < |λ| < ε; thus σs(T ) does not cluster
at 0 and consequently T ∗ has SVEP at 0. By Theorem 2.5 we then conclude that
T is right Drazin invertible.

(iii) Clear. �

Corollary 2.10. For every T ∈ L(X) we have

σusbb(T ) = σld(T ), σlsbb(T ) = σrd(T ), σbb(T ) = σd(T ).

3. Browder type theorems

Let us denote by USBF−(X) the class of all upper semi-B-Fredholm operators
with index less than or equal to 0, while by LSBF+(X) we denote the class of all
lower semi-B-Fredholm operators with index greater than or equal to 0. Set

σusbf−(T ) := {λ ∈ C : λI − T /∈ USBF−(X)}
and

σlsbf+(T ) := {λ ∈ C : λI − T /∈ LSBF+(X)}.
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Theorem 3.1. If T ∈ L(X), then the following equalities hold:
(i) σusbb(T ) = σusbf−(T ) ∪ accσa(T ).
(ii) σlsbb(T ) = σlsbf+(T ) ∪ accσs(T ).
(iii) σbb(T ) = σbw(T ) ∪ accσ(T ).

Proof. The proof of the equalities (i), (iii) may be found in [6] and [7]. To show
the equality (ii), we observe first that

(7) σlsbf+(T ) ⊆ σrd(T ).

Indeed, if λ /∈ σrd(T ), then, by Theorem 2.5, λI − T[n] is onto some n ∈ N, hence
lower semi-Fredholm and

ind(λI − T ) = ind(λI − T[n]) = α(λI − T[n]) ≥ 0;

thus λ /∈ σlsbf+(T ).
By Corollary 2.10, in order to show the inclusion σlsbb(T ) ⊇ σlsbf+(T )∪accσs(T )

we need only to prove that accσs(T ) ⊆ σlsbb(T ). If λ /∈ σlsbb(T ) = σrd(T ), then
λI −T is right Drazin invertible, and hence by Theorem 2.5, λI −T is T is semi-B-
Fredholm with q(λI −T ) < ∞. By Corollary 4.8 of [16] it then follows that λI −T
is onto in a punctured disc centered at λ; thus λ /∈ accσs(T ).

To show the opposite inclusion σlsbb(T ) ⊆ σlsbf+(T ) ∪ accσs(T ), suppose that
λ /∈ σlsbf+(T ) ∪ accσs(T ). Since λ /∈ acc σs(T ), then T ∗ has SVEP at λ. Since
λI − T is lower semi-B-Fredholm by Theorem 2.5, then λI − T is right Drazin
invertible. By Corollary 2.10, then λ /∈ σrd(T ) = σlsbb(T ), so the equality (ii) is
proved. �

A bounded operator T ∈ L(X) is said to satisfy Browder’s theorem if σw(T ) =
σb(T ). Denote by σusf−(T ) the essential approximate point spectrum of T , defined
as the complement in C of the set of all λ such that λI −T is upper semi-Fredholm
with ind T ≤ 0. The operator T ∈ L(X) is said to satisfy a-Browder’s theorem if
σusf−(T ) = σub(T ); see for instance [4].

According to [12], a bounded operator T ∈ L(X) is said to satisfy the generalized
Browder’s theorem if σ(T ) \ σbw(T ) = σd(T ), while T ∈ L(X) is said to satisfy the
generalized a-Browder’s theorem if σa(T ) \ σusbf−(T ) = σld(T ).

Note that in all the papers concerning generalized Browder’s theorems (see for
instance [7], [15], [12], [8]), there is no trace of the role of B-Browder spectra. Our
Corollary 2.10 shows that this is only apparent. In fact, by Corollary 2.10 we have:

generalized Browder’s theorem holds for T ⇔ σbw(T ) = σbb(T ),

while

generalized a-Browder’s theorem holds for T ⇔ σusbf−(T ) = σusbb(T ).

Browder’s theorem may be characterized by localized SVEP: Browder’s theorem
(resp. generalized Browder’s theorem) holds for T if and only if T has SVEP at
every λ /∈ σw(T ) ([3]) (resp. T has SVEP at every λ /∈ σbw(T ), see [7]), while
a-Browder’s theorem (resp. generalized a-Browder’s theorem) holds for T if and
only if T has SVEP at every λ /∈ σusf−(T ) ([4]) (resp. T has SVEP at every
λ /∈ σusbf−(T ), see([6]). The inclusions σbw(T ) ⊆ σw(T ) and σusf−(T ) ⊆ σusbf−(T )
immediately entail that the generalized Browder’s theorem implies Browder’s the-
orem, and, analogously, the generalized a-Browder’s theorem implies a-Browder’s
theorem. The main result of a very recent paper [8] proves that Browder’s theorem
and the generalized Browder’s theorem (respectively, a-Browder’s theorem and the
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generalized a-Browder’s theorem) are equivalent. These results may be shown in a
few lines as follows:

Theorem 3.2. For every T ∈ L(X) the following equivalences hold:
(i) σw(T ) = σb(T ) ⇔ σbw(T ) = σbb(T ).
(ii) σusf−(T ) = σub(T ) ⇔ σusbf−(T ) = σusbb(T ).

Proof. (i) We have only to show the implication ⇒. Assume that σw(T ) = σb(T ).
Clearly, σbw(T ) ⊆ σbb(T ) for all T ∈ L(X). To show the opposite inclusion,
assume that λ0 /∈ σbw(T ), i.e. that λ0I − T is B-Weyl. By [13, Corollary 3.2],
then there exists an open disc D such that λI − T is Weyl and hence Browder for
all λ ∈ D \ {λ0}. Since p(λI − T ) = q(λI − T ) < ∞, then both T and T ∗ have
SVEP at every λ ∈ D \ {λ0}, and hence both T and T ∗ have SVEP at λ0. By
Theorem 2.5, then λ0I−T is Drazin invertible, or equivalently λ0 /∈ σbb(T ). Hence
σbw(T ) = σbb(T ).

(ii) Also here it suffices to prove the implication ⇒. Assume that σusf−(T ) =
σub(T ). Clearly, σusbf−(T ) ⊆ σusf(T ) for all T ∈ L(X). Suppose that λ0 /∈
σusbf−(T ). Then λ0I − T ∈ USBF−(X) and by [13, Corollary 3.2] there exists
an open disc D such that λI − T is upper semi-Fredholm with index less than or
equal to 0 for all λ ∈ D\{λ0}. From assumption then λI−T is upper semi-Browder;
hence p(λI − T ) < ∞. Thus, T has SVEP at every λ ∈ D \ {λ0} and hence T also
has SVEP at λ0. By Theorem 2.5 we then conclude that λ0 /∈ σld(T ) = σusbb(T ),
so the equality σusbf−(T ) = σusbb(T ) is proved. �

The following result shows that many of the spectra considered before coincide
whenever T or T ∗ has SVEP.

Theorem 3.3. Suppose that T ∈ L(X). Then the following statements hold:
(i) If T has SVEP, then

(8) σlsbf+(T ) = σlsbb(T ) = σd(T ) = σbw(T ).

(ii) If T ∗ has SVEP, then

(9) σusbf−(T ) = σusbb(T ) = σbw(T ) = σd(T ).

(iii) If both T and T ∗ have SVEP, then

(10) σusbf−(T ) = σlsbf+(T ) = σbw(T ) = σd(T ).

Proof. (i) By Theorem 3.1 and Corollary 2.10 we have

σlsbf+(T ) ⊆ σlsbb(T ) = σrd(T ) ⊆ σd(T ).

We show now that σd(T ) ⊆ σlsbf+(T ). Assume that λ /∈ σlsbf+(T ). We may assume
λ = 0. Since T is lower semi-B-Fredholm and since T ∗ has SVEP, in particular T ∗

has SVEP at 0, by Theorem 2.5 then T is right Drazin invertible or, equivalently,
lower semi-B-Browder. Therefore there exists n ∈ N such that T[n] is lower semi-
Fredholm and q(T[n]) < ∞. By Theorem 3.4 of [1] it then follows that ind T[n] ≤ 0.
On the other hand, since λ /∈ σlsbf+(T ), we also have indT[n] ≥ 0 from which we
obtain indT[n] = 0. This implies, again by Theorem 3.4 of [1], that also p(T[n]) < ∞,
so that T[n] is Browder and hence T is B-Browder. By part (iii) of Theorem 2.9
then T is Drazin invertible, so 0 /∈ σd(T ), as desired. Finally, since T has SVEP by
which the T satisfies the generalized Browder’s theorem, we have σbw(T ) = σd(T )
and the equalities (8) are proved.
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(ii) The inclusion σlsbf−(T ) ⊆ σusbb(T ) = σld(T ) ⊆ σd(T ) holds for every T ∈
L(X) by Theorem 3.1 and Corollary 2.10.

We show that σd(T ) ⊆ σusbf−(T ). Suppose that λ /∈ σusbf−(T ) and assume that
λ = 0. Since T is upper semi-B-Fredholm, then there exists n ∈ N such that T[n]

is upper semi-Fredholm. The restriction T[n] := T |Tn(X) has SVEP, in particular
has SVEP at 0 and hence, see Remark 2.2, p(T[n]) < ∞. By Theorem 3.4 of [1] it
then follows that indT[n] ≤ 0. On the other hand, since λ /∈ σlsbf+(T ), we also have
indT[n] ≥ 0 from which we obtain ind T[n] = 0. This implies, again by Theorem 3.4
of [1], that also q(T[n]) < ∞, so that T[n] is Browder and hence T is B-Browder.
By part (iii) of Theorem 2.9, then T is Drazin invertible, so 0 /∈ σd(T ), as desired.
Finally, since T has SVEP, then T satisfies the generalized Browder’s theorem, so
σbw(T ) = σd(T ).

(iii) Clear from parts (i), (ii). �
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Palermo, Viale delle Scienze, I-90128 Palermo, Italy

E-mail address: paiena@unipa.it
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Abstract. In this paper we study the relationships between the B-Browder
spectra and some other spectra originating from Fredholm theory and B-
Fredholm theory. This study is done by using the localized single valued ex-
tension property. In particular, we shall see that many spectra coincide in the
case that a bounded operatorT, or its dualT∗, or both, admits the single val-
ued extension property.
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1 Introduction and terminology

An important class of operators in Fredholm theory is the class of (upper,
lower) semi-Browder operators defined on Banach spaces ([17], [18]). This
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E-mail: jsanabri@sucre.udo.edu.ve



242 C. Carpintero et al.

class of operators has been studied in [5] by using methods of local spectral
theory, in particular these operators have been characterized by means of a lo-
calized version of the so-called single-valued extension property (SVEP). In
this paper we extend these results to the class of semi B-Browder operators,
defined according the B-Fredholm theory introduced by Berkani and coau-
thors ([9], [10], [11]). The characterizations of semi B-Browder operators in
terms of localized SVEP are then used for obtaining many relationships be-
tween some spectra originating from Fredholm theory and B-Fredholm the-
ory. In particular, we show that if an operatorT, or its dualT∗, satisfies SVEP
then many of these spectra coincide. We lso consider the special case where
the boundary of the spectrum coincide with the approximate point spectrum,
or with the surjectivity spectrum.

Throughout this paperL(X) will denote the algebra of all bounded linear
operators acting on an infinite- dimensional complex Banach spaceX. For
T ∈ L(X) we denote byN(T) the null space ofT, by α(T) = dimN(T) the
nullity of T, by R(T)=T(X) the range ofT and byβ (T) = codimR(T) =
dimX/R(T) the defect ofT. Theascent p= p(T) of an operatorT is defined
as the smallest non-negative integerp such thatN(T p) = N(T p+1). If such an
integer does not exist, we putp(T) = ∞. Analogously, thedescent q= q(T)
is defined as the smallest non-negative integerq such thatR(Tq) = R(Tq+1),
and if such an integer does not exist, we putq(T) = ∞. An operatorT ∈ L(X)
is said to beFredholm(resp.upper semi -Fredholm, lower semi-Fredholm),
if α(T), β (T) are both finite (resp.R(T) closed andα(T) < ∞ , β (T) < ∞).
T is said to besemi-Fredholmif T is either an upper semi-Fredholm or a
lower semi-Fredholm operator. Other two important classes of operators in
Fredholm theory are the classes of semi-Browder operators. These classes are
defined as follow,T ∈ L(X) is said to beBrowder(resp.upper semi-Browder,
lower semi-Browder) if T is a Fredholm (resp. upper semi-Fredholm, lower
semi-Fredholm) and bothp(T), q(T) are finite (resp.p(T) < ∞, q(T) < ∞).

Given n ∈ N, we denote byTn the restriction ofT ∈ L(X) on the sub-
spaceR(Tn) = Tn(X). According Berkani ([10] and [11]),T is said to be
semiB-Fredholm(resp.B-Fredholm, upper semi B-Fredholm, lower semi B-
Fredholm), if for some integern≥ 0 the rangeR(Tn) is closed andTn, viewed
as a operator from the spaceR(Tn) in to itself, is a semi-Fredholm operator
(resp. Fredholm, upper semi-Fredholm, lower semi-Fredholm) . Analogously,
T ∈ L(X) is said to beB-Browder(resp.,upper semi B-Browder, lower semi
B-Browder), if for some integern≥ 0 the rangeR(Tn) is closed andTn is a
Browder operator (resp., upper semi-Browder, lower semi -Browder). Define

∆(T) := {n∈ N : m≥ n,m∈ N⇒ Tn(X)∩ N(T)⊆ Tm(X)∩N(T)}.

The degree of stable iterationis defined as dis(T) := inf ∆(T) if ∆(T) 6= /0,
while dis(T) = ∞ if ∆(T) = /0.
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Definition 1 T ∈ L(X) is said to bequasi-Fredholm of degree d, if there exists
d ∈ N such that:

(a) dis(T) = d,
(b) Tn(X) is a closed subspace ofX for eachn≥ d,
(c) T(X)+N(Td) is a closed subspace ofX.

For further informations on quasi-Fredholm operators we refer to [10] and
[11].

2 Ascent and descent of restrictions

This first section leads with some preliminary results concerning the ascent
and the descent of restrictions ofT to the ranges of its power. We start first
with the following useful lemma ([1, Lemma 3.2]):

Lemma 1 Let T be a linear operator on a vector space X. Then p:= p(T)≤
m< ∞ if and only if N(Tn)∩Tm(X) = {0} for all n ∈ N..

Suppose now thatT ∈ L(X) and putTn := T|Tn(X) for all n∈ N. Then

N(Tn+1) = N(T)∩Tn+1(X)⊆ N(T)∩Tn(X) = N(Tn) for all n∈ N, (1)

and
R(Tm

n ) = R(Tm+n) = R(Tn
m) for all m,n∈ N. (2)

Lemma 2 Let T be a linear operator on a vector space X. Then the following
statements are equivalent:

(i) p(T) < ∞;

(ii) there exists k∈ N such that Tk is injective;

(iii) there exists k∈ N such that p(Tk) < ∞.

Proof. (i) ⇔ (ii) If p := p(T) < ∞, by Lemma 1, thenN(Tp) = N(T)∩
T p(X) = {0} . Conversely, suppose thatN(Tk) = {0}, for somek ∈ N. If
x∈ N(Tk+1) thenT(Tkx) = 0, so

Tkx∈ N(T)∩Tk(X) = N(Tk) = {0}.

Hencex∈ N(Tk). This shows thatN(Tk+1)⊆ N(Tk). The opposite inclusion
is true for every operator, thusN(Tk+1) = N(Tk) and consequentlyp(T)≤ k.

(ii) ⇔ (iii) The implication (ii) ⇒ (iii) is obvious. To show the opposite
implication, suppose thatν := p(Tk) < ∞. By Lemma 1 and by using the
equality (2) we have:

{0} = N(Tk)∩R(Tk
ν) = (N(T)∩R(Tk))∩R(Tk

ν) = N(T)∩R(Tk
ν)

= N(T)∩R(Tν+k) = N(Tν+k),
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so that the equivalence⇔ (iii) is proved. ut
A dual result holds for the descent:

Lemma 3 Let T be a linear operator on a vector space X. Then the following
statements are equivalent:

(i) q(T) < ∞;

(ii) there exists k∈ N such that Tk is onto;

(iii) there exists k∈ N such that q(Tk) < ∞.

Proof. (i) ⇔ (ii) Suppose thatq := q(T) < ∞. Then

Tq(X) = Tq+1(X) = T(Tq(X)) = R(Tq),

henceTq is onto. Conversely, ifTk is onto for somek∈ N then

Tk+1(X) = T(Tk(X)) = R(Tk) = Tk(X),

thusq(T)≤ k.

The implication (ii)⇒ (iii) is obvious. We show (iii)⇒ (i). Suppose that
ν := q(Tk) < ∞ for somek ∈ N. ThenTk

ν(X) = Tk
ν+1(X), i.e. Tk+ν(X) =

Tν+k+1(X), henceq(T)≤ k+ν . ut

Remark 1As observed in the proof of Lemma 2 ifp := p(T)< ∞ thenN(Tp)=
{0} and from the inclusion (1) it is obvious thatN(Tj) = {0} for all j ≥ p.
Conversely, ifN(Tk) = {0} for somek ∈ N then p(T) < ∞ and p(T) ≤ k.
Hence, ifp(T) < ∞ then

p(T) = inf{k∈ N : Tk is injective}.

Analogously, ifq := q(T) < ∞ thenTj is onto for all j ≥ q. Conversely, ifTk

is onto for somek∈ N thenq(T)≤ k, so that

q(T) = inf{k∈ N : Tk is onto}.

Definition 2 T ∈ L(X), X a Banach space, is said to beleft Drazin invertible
if p := p(T) < ∞ andT p+1(X) is closed, whileT ∈ L(X) is said to beright
Drazin invertibleif q := q(T) < ∞ andTq(X) is closed.

It should be noted that the conditionq= q(T) < ∞ does not entails thatTq(X)
is closed, see Example 5 of [15]. Clearly,T ∈ L(X) is both right and left
Drazin invertible if and only ifT is Drazin invertible. In fact, if 0< p :=
p(T) = q(T) thenT p(X) = T p+1(X) is the kernel of the spectral projection
P0 associated with the spectral set{0}, see [13, Prop. 50.2]. Later we shall
see that left Drazin invertible operator, as well as every right Drazin invertible
operator, is semi B-Fredholm.
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Lemma 4 If T ∈ L(X) and p= p(T) < ∞ then the following statements are
equivalent:

(i) There exists a natural n≥ p+1 such that Tn(X) is closed;

(ii) Tn(X) is closed for all n≥ p.

Proof. Definec′i(T) := dim(N(T i)/N(T i+1). Clearly, p = p(T) < ∞ entails
thatc′i(T) = 0 for all i ≥ p, soki(T) := c′i(T)−c′i+1(T) = 0 for all i ≥ p. The
equivalence then easily follows from [15, Lemma 12]. ut

Recall that a bounded operatorT ∈ L(X) on a Banach space is called
bounded belowif T is injective and has closed range. The concept of left
(respectively, right) Drazin invertibility may be view as the topological coun-
terpart of the property of having finite ascent (respectively, finite descent). In
fact we have:

Theorem 1 If T ∈ L(X) then we have:

(i) T is left Drazin invertible if and only if there exists a k∈ N such that
Tk(X) is closed and Tk is bounded below. In this case Tj(X) is closed and Tj
is bounded below for all naturals j≥ k.

(ii) T is right Drazin invertible if and only if there exists a k∈ N such that
Tk(X) is closed and Tk is onto. In this case Tj(X) is closed and Tj is onto for
all naturals j≥ k.

(iii) T is Drazin invertible if and only if there exists a k∈ N such that
Tk(X) is closed and Tk is invertible. In this case Tj(X) is closed and Tj is
invertible for all naturals j≥ k.

Proof. (i) Supposep := p(T) < ∞ and thatT p+1(X) closed. ThenTp is in-
jective andR(Tp) = T p+1(X) is closed. Conversely, ifTk is bounded below
for somek∈ N then, by Lemma 2,p := p(T) < ∞ and by Remark 1 we have
p≤ k, and hencep+ 1≤ k+ 1. SinceR(Tk) = Tk+1(X) is closed then, by
Lemma 4,T p+1(X) is closed and consequentlyT is left Drazin invertible.
The last assertion is clear, by Remark 1,Tj is injective for all j ≥ k andT j(X)
is closed, again by Lemma 4.

(ii) Suppose thatq := q(T)< ∞ andTq(X) is closed thenR(Tq)= Tq+1(X)=
Tq(X), soTq is onto. Conversely, suppose thatTk(X) is closed andTk is onto
for somek ∈ N. Then, by Lemma 2,q = q(T) < ∞ andq+ 1≤ k+ 1. By
Lemma 4 thenTq(X) is closed and henceT is right Drazin invertible. By
Lemma 4 thenT j(X) is closed for allj ≥ k, and by Remark 1Tj is onto for
all j ≥ k.

(iii) Clear. ut
Also here, ifT is left Drazin invertible then

p(T) = inf{k∈ N : Tk(X) is closed andTk is bounded below},
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while, if T is right Drazin invertible then

q(T) = inf{k∈ N : Tk(X) is closed andTk is onto}.

Observe that also the property of being quasi-Fredholm may be described
in terms of restrictions. Recall thatT ∈ L(X) is said to besemi-regularif T(X)
is closed andN(T)⊆ Tn(X) for all n∈ N.

Theorem 2 T ∈ L(X) is quasi-Fredholm if and only if the exists k∈ N such
that Tk(X) is closed and Tk is semi-regular. In this case Tj is semi-regular for
all j ≥ k.

Proof. The equivalence is due to Berkani [10, Proposition 3.2]. To prove the
last statement, suppose thatTk is semi-regular for somek ∈ N. For all j ≥ k
then

N(Tj)⊆ N(Tk)⊆ R(Tn
k ) = Tk+n+1(X) for all n∈ N.

In particular,

N(Tj)⊆ Tk+( j−k)+n+1(X) = T j+n+1(X) = R(Tn
j ),

for all n∈ N. Moreover, sinceTn
k is semi-regular for alln∈ N, see Corollary

[1, Corollary 1.17], it then follows thatR(Tj) is closed for allj ≥ k. HenceTj

is semi-regular. ut
Clearly, every semi-regular operator is quasi-Fredholm. It should be noted

that both Theorem 1 and Theorem 2 provide a very clear picture of the rela-
tionship between the concepts of quasi-Fredholm operators and Drazin (left,
right) invertibility: every bounded below operator, as well as every surjective
operator, is semi-regular, so from Theorem 2 and Theorem 1 we easily deduce
that every left Drazin invertible operator, as well as every right Drazin invert-
ible operator is quasi-Fredholm. Actually, every semi B-Fredholm operator is
quasi-Fredholm, see Proposition 2.5 of [11].

3 SVEP

We now define a basic property, introduced by Finch [12], and later studied
extensively by Aiena and coauthors ([1],[3], [4], [5] and [7]). A bounded oper-
atorT ∈ L(X) on a complex Banach spaceX is said to havethe single valued
extension propertyatλ0 ∈C (abbreviated, SVEP atλ0), if for every open disc
Dλ0

⊆C centered atλ0 the only analytic functionf : Dλ0
→ X which satisfies

the equation
(λ I −T) f (λ ) = 0 for all λ ∈ Dλ0

,

is the function f ≡ 0 on Dλ0
. The operatorT is said to have SVEP ifT

has the SVEP at every pointλ ∈ C. Evidently,T ∈ L(X) has SVEP at every
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point of the resolventρ(T) := C \σ(T). Moreover, from the identity theo-
rem for analytic functions it is easily seen thatT has SVEP at every point
of the boundary∂σ(T) of the spectrum. In particular,T has SVEP at every
isolated point of the spectrum. Note that the localized SVEP is inherited by
the restriction to closed invariant subspaces, i.e. ifT has SVEP atλ0 andM
is a closedT-invariant subspace ofX thenT|M has SVEP atλ0. Moreover, if
H (σ(T)) denotes the set of all complex-valued functions which are locally
analytic on an open set containingσ(T), for every f ∈H (σ(T)) then f (T)
has the SVEP, see [1, Theorem 2.40]. We have

p(λ I −T) < ∞⇒ T has SVEP atλ , (3)

and dually
q(λ I −T) < ∞⇒ T∗ has SVEP atλ , (4)

see [1, Theorem 3.8].

Remark 2The implications (3), (4), are actually equivalences ifT is a quasi-
Fredholm operator, see [3].

The class ofB-Browder operators may be described in terms of SVEP:

Theorem 3 Let T∈ L(X). Then the following properties are equivalent:

(i) λ0I −T is left Drazin invertible;
(ii) λ0I −T is upper semi B-Browder;

(iii) λ0I −T is quasi-Fredholm operator having finite ascent;

(iv) λ0I −T is quasi-Fredholm and T has the SVEP atλ0.

Proof. Clearly,T has the SVEP atλ0 if and only if λ0I −T has the SVEP at
0, so in the proof we can supposeλ0 = 0.

(i) ⇒ (ii) Clearly, if T is left Drazin invertible then, by Theorem 1, there
existsn∈ N such thatTn(X) is closed,Tn is bounded below, and hence upper
semi-Browder.

(ii) ⇒ (iii) As already observed,T is quasi-Fredholm. Moreover, sinceTn

is upper semi-Browder for somen ∈ N then p(Tn) < ∞, and this entails, by
Lemma 2, thatp(T) < ∞.

(iii) ⇒ (i) If T quasi-Fredholm andp := p(T) < ∞ then, by Remark 1,Tn

is injective for alln≥ p. Moreover, ifd is the degree ofT thenTn(X) is closed
for all n≥ d, soTn is bounded below forn sufficiently large. By Theorem 1
thenT is left Drazin invertible.

(iii) ⇔ (iv) This is clear by Remark 2. ut
The equivalence (i)⇔ (ii) of Theorem 3 has been proved in [4] (see also

[10]) . Our proof is much more simple.
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Theorem 4 Let T∈ L(X) Then the following properties are equivalent:

(i) λ0I −T is right Drazin invertible;

(ii) λ0I −T is lower semi B-Browder;

(iii) λ0I −T is quasi-Fredholm having finite descent;

(iv) λ0I −T is quasi-Fredholm and T∗ has SVEP atλ0.

Proof. Also here we can assume thatλ0 = 0.

(i) ⇒ (ii) Clearly, if T is right Drazin invertible then, by Theorem 1, there
existsn ∈ N such thatTn(X) is closed,Tn is onto, and hence a lower semi-
Browder operator,

(ii) ⇒ (iii) Clearly, T is quasi-Fredholm. Moreover, sinceTn is lower semi-
Browder for somen∈ N thenq(Tn) < ∞, and by Lemma 3 this is equivalent
to saying thatq(T) < ∞.

(iii) ⇒ (i) Suppose thatT is quasi-Fredholm andq := q(T) < ∞. As ob-
served in Remark 1 thenTn is onto for alln≥ q. As Tn(X) is closed for all
n≥ d, whered is the degree ofT. By Theorem 1 it then follows thatT is right
Drazin invertible.

(iii) ⇔ (iv) This follows from Remark 2. ut
Also the equivalence (i)⇔ (ii) of Theorem 4 has been observed in [10]

and proved by using different methods in [4]. The proof given here is much
more simple. It should be noted that for Hilbert spaces operators instead of
considering the dualT∗ of T is more appropriate to consider the Hilbert ad-
joint T ′. Since, as observed in [2],T∗ has SVEP atλ if and only if T ′ has
SVEP atλ , in the case of Hilbert space operators the dualT∗ of T may be
replaced byT ′.

Corollary 1 Let T∈ L(X). Then the following properties are equivalent:

(i) λ0I −T is Drazin invertible ;

(ii) λ0I −T is B-Browder;

(iii) λ0I −T is quasi-Fredholm and both T , T∗ have the SVEP atλ0.

4 Some Relationships between spectra

The classes of operators defined in the previous section motivate the defini-
tions of several spectra. Theupper semi-Browder spectrumis defined by

σub(T) := {λ ∈ C : λ I −T is not upper semi-Browder},

The lower semi-Browder spectrumis defined by

σlb(T) := {λ ∈ C : λ I −T is not lower semi-Browder}.



B-Browder spectra and localized SVEP 249

From the classical Fredholm theory we haveσub(T) = σlb(T∗) andσlb(T) =
σub(T∗). The B-Fredholm spectrum is by

σbf(T) = {λ ∈ C : λ I −T is not B-Fredholm},

theupper B-Browder spectrumspectrum ofT ∈ L(X) is defined by

σubb(T) = {λ ∈ C : λ I −T is not upper B-Browder},

the lower B-Browder spectrumspectrum is defined by

σlbb(T) = {λ ∈ C : λ I −T is not lower B-Browder},

while theB-Browder spectrumis defined, by

σbb(T) = {λ ∈ C : λ I −T is not B-Browder}.

Clearly,σbb(T) = σubb(T)∪σlbb(T). An obvious consequence of Corol-
lary 1 is thatσbb(T) coincides with theDrazin spectrumσd(T) of T. More-
over, by Theorem 3,σubb(T) coincides withσld(T), the left Drazin spectrum
of T, and by Theorem 4σlbb(T) = σd(T), the right Drazin spectrumof T.
Thequasi-Fredholm spectrumof T ∈ L(X) is defined by

σqf(T) = {λ ∈ C : λ I −T is not quasi-Fredholm}.

Hence,
σqf(T)⊆ σbf(T)⊆ σbb(T). (5)

Note that all the spectra in (5) may be empty. This is the case where the spec-
trum of T is a finite set of poles of the resolvent (i.e.T is algebraic, see [1,
Theorem 3.83]. In this case,σbb(T) = σd(T) is obviously empty. Further-
more, all the spectra in (5) are compact subsets ofC, see [10, Corollary 3.8].
In the sequel by∂K we denote the boundary ofK ⊂ C.

Theorem 5 If T ∈ L(X) we have

(i) ∂σbb(T)⊆ σqf(T),
(ii If If σbf(T) is connected thenσbb(T) is connected,

Proof. (i) Obviously, we can assume thatσbb(T) is not empty. Suppose that
λ ∈ ∂σbb(T). We claim that bothT andT∗ have SVEP atλ . Let f : Dλ → X
a analytic function on the open discDλ centered atλ , such that

(µI −T) f (µ) = 0 for eachµ ∈ Dλ .

Let ρbb(T) := C \ σbb(T). Then Dλ ∩ ρbb(T) 6= /0 and µI − T is a B-
Browder operator for allµ ∈ Dλ ∩ρbb(T), so by Corollary 1, bothT andT∗

have SVEP at everyµ ∈Dλ ∩ρbb(T). On the other hand,Dλ ∩ρbb(T) is open
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and for eachµ ∈Dλ ∩ρbb(T) there exists an open discDµ ⊆Dλ ∩ρbb(T) cen-
tered atµ such thatf : Dµ →X is analytic and the equation(η I−T) f (η) = 0
holds for allη ∈ Dµ . SinceT has the SVEP atµ, it then follows thatf ≡
0 in Dµ . This implies, via the identity theorem for analytic functions, that
f ≡ 0 in Dλ . Thus,T has the SVEP atλ . In similar way,T∗ has the SVEP
at λ . Now, if λ /∈ σqf(T), thenλ I −T is quasi-Fredholm and the SVEP forT
andT∗ at λ implies thatλ /∈ σbb(T), a contradiction.

(ii) Assume thatσbf(T) is connected andσbb(T) is not connected. Sup-
pose, for instanceσbb(T) = Ω1∪Ω2, whereΩ1, Ω2 are two closed non-empty
set such thatΩ1∩Ω2 = /0. Sinceσbf(T) ⊆ σbb(T) andσbf(T) is connected
thenσbf(T) is contained either inΩ1 or Ω2. Supposeσbf(T) ⊆ Ω1. The set
ρbf(T) is open and hence may be decomposed in maximal open connected
components. Evidently,Ω2 is contained in the unbounded componentΩ of
ρbf(T) = C \ σbf(T) which intersects the resolventρ(T) := C \ σ(T). By
Theorem 3.3 and Theorem 3.4 of [8] bothT and T∗ have SVEP either at
every point or at no point of a component ofρbf(T). SinceT andT∗ have
SVEP at the points of the resolvent, it then follows thatT andT∗ have SVEP
at all points ofΩ . In particular,T andT∗ have SVEP at everyλ ∈ Ω2. But
λ /∈ σbf(T), henceλ I −T is quasi-Fredholm. By Corollary 1 it then follows
thatλ I −T is B-Browder, a contradiction, sinceΩ2 ⊆ σbb(T). ut

A bounded operatorT ∈ L(X) is said to be aWeyl operatorif T is a Fred-
holm operator having index 0;T ∈ L(X) is said to beupper semi-Weylif T
upper semi-Fredholm with index indT ≤ 0; T is said to belower semi-Weylif
T is lower semi-Fredholm with indT ≥ 0. TheWeyl spectrumand is defined,
by

σw(T) := {λ ∈ C : λ I −T is not Weyl},

theupper semi-Weyl spectrumandlower semi-Weyl spectrumare defined, re-
spectively, by

σuw(T) := {λ ∈ C : λ I −T is not upper semi-Weyl},

and

σlw(T) := {λ ∈ C : λ I −T is not lower semi-Weyl}.

It is known from the classical Fredholm theory thatσuw(T) = σlw(T∗) and
σlw(T) = σuw(T∗).

A bounded operatorT ∈ L(X) is said to beB-Weyl(respectively,upper
semi B-Weyl, lower semi B-Weyl), if for some integern≥ 0 the rangeTn(X)
is closed andTn is Weyl (respectively, upper semi-Weyl, lower semi-Weyl).

TheB-Weyl spectrumis defined by

σbw(T) := {λ ∈ C : λ I −T is not B-Weyl};
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theupper semi B-Weyl spectrumand thelower semi B-Weyl spectrumare de-
fined, respectively, by

σubw(T) = {λ ∈ C : λ I −T is not upper semi B-Weyl},

and
σlbw(T) = {λ ∈ C : λ I −T is not lower semi B-Weyl}.

Clearly,σbw(T) = σubw(T)∪σlbw(T). For an operatorT ∈ L(X), we set

Ξ(T) := {λ ∈ C : T does not have SVEP atλ}.

Trivially, Ξ(T) is empty wheneverT has the SVEP. Moreover, the setΞ(T)
is an open set contained in interior of the spectrum ofT.

Theorem 6 Let T∈ L(X). Then we have:

σubb(T) = σqf(T)∪Ξ(T) = σubw(T)∪Ξ(T) (6)

and
σlbb(T) = σqf(T)∪Ξ(T∗) = σlbw(T)∪Ξ(T∗) (7)

Moreover,
σbb(T) = σbw(T)∪Ξ(T) = σbw(T)∪Ξ(T∗). (8)

Proof. We show the first equality in (6). Suppose thatλ ∈ σqf(T)∪Ξ(T).
Thenλ ∈ σqf(T) or T does not have SVEP atλ . In the first caseλ ∈ σubb(T),
sinceσqf(T) ⊆ σubb(T). Also the second case entails thatλ ∈ σubb(T), oth-
erwise by Lemma 2 we would havep(λ I −T) < ∞ and henceT has SVEP
at λ . Therefore,σqf(T)∪Ξ(T)⊆ σubb(T). Conversely, ifλ /∈ σqf(T)∪Ξ(T)
then, by Theorem 3,λ I −T is upper semi-Browder, soλ /∈ σubb(T).
To show the second equality in (6), observe first thatσubb(T) ⊆ σubw(T)∪
Ξ(T), sinceσqf(T) ⊆ σubw(T). Let λ /∈ σubb(T). Thenλ I −T is upper semi
B-Browder, in particular upper semi B-Weyl, soλ /∈ σubw(T). Clearly,T has
SVEP, since by Lemma 2p(λ I−T) < ∞, henceλ /∈Ξ(T). Hence both equal-
ities in (6) are proved.
The equalities in (7) can be proved by means of similar arguments, just use
Lemma 3. Analogously, the equalities in (8) may be proved by using both
Lemma 2 and Lemma 3. ut

Corollary 2 Let T∈ L(X). Then we have:

(i) If T has the SVEP then

σqf(T) = σubw(T) = σubb(T), (9)

and
σbw(T) = σbb(T) = σlbb(T) = σlbw(T). (10)
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(ii) If T ∗ has the SVEP then

σqf(T) = σlbw(T) = σlbb(T), (11)

and
σbw(T) = σbb(T) = σubb(T) = σubw(T). (12)

(iii) If both T , T∗ have SVEP then

σqf(T) = σubb(T) = σlbb(T) = σbb(T)
= σbw(T) = σlbw(T) = σubw(T).

Proof. (i) The equalities in (9) are clear from Theorem 6. Also the first equal-
ity in (10) is clear from Theorem 6. We show the equalityσbb(T) = σlbb(T).
Clearly,σlbb(T)⊆ σbb(T). Conversely, ifλ /∈ σlbb(T) thenq(λ I−T) < ∞, by
Lemma 3. Butλ I −T is quasi-Fredholm and the SVEP atλ implies by The-
orem 3 thatλ I −T is upper semi B-Browder, hencep(λ I −T) < ∞, so that
λ /∈ σbb(T). Therefore,σbb(T) = σlbb(T). To show the equalityσlbb(T) =
σlbw(T) we need only to prove thatσlbb(T) ⊆ σlbw(T). If λ /∈ σlbw(T) then
λ I −T is semi B-Fredholm, hence quasi-Fredholm. By Theorem 3 the SVEP
of T at λ implies thatλ I −T is semi B-Browder, henceλ /∈ σlbb(T).

(ii) The equalities (11) and (12) can be proved in a similar way of part (i).

(iii) The equalities are consequence of part (i) and part (ii). ut
Corollary 2 improves the results of Theorem 3.3 of [4].

Remark 3Since the SVEP forT (respectively, forT∗) implies that f (T) (re-
spectively,f (T∗) = f (T)∗) has SVEP for allf ∈H (σ(T)), then the equali-
ties established in Corollary 2 holds forf (T).

A bounded operatorT ∈ L(X) is said to satisfygeneralized a-Browder’s
theoremif the equalityσubw(T) = σld(T) (= σubb(T)) holds. Note that gen-
eralized a-Browder’s theorem implies that the equalitiesσbw(T) = σd(T) =
σbb(T)) hold, namelyT satisfiesgeneralized Browder’s theorem, see for in-
stance [6]. Generalizeda-Browder’s theorem forT is equivalent to so-called
a-Browder’s theoremfor T, which means thatσub(T) coincides withσuw(T))
(see for a simple proof [4]). This implies the so-calledBrowder’s theoremfor
T, namely the equalityσb(T) = σw(T) holds forT.

Theapproximate point spectrumof T ∈ L(X) is defined by

σa(T) := {λ ∈ C : λ I −T is not bounded below},

thesurjectivity spectrumof T is defined by

σs(T) := {λ ∈ C : λ I −T is not onto},
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theKato spectrumis defined by

σk(T) := {λ ∈ C : λ I −T is not semi-regular}.

By Theorem 2 we have

σqf(T)⊆ σk(T)⊆ σa(T)∩σs(T). (13)

In the sequel, the set of all accumulation points ofK ⊆ C will be denoted
by accK. From the definition of localized SVEP it is easily seen thatΞ(T)⊆
accσa(T), and duallyΞ(T∗)⊆ accσs(T).

Corollary 3 If T ∈ L(X) then we have

(i) σubb(T) = σqf(T)∪accσa(T).
(ii) σlbb(T) = σqf(T)∪accσs(T).
(iii) σbb(T) = σqf(T)∪accσ(T).

Proof. (i) Clearly, by Theorem 6,σubb(T)⊆ σqf(T)∪accσa(T). To show the
opposite inclusion letλ /∈σqf(T)∪acc σa(T). Thenλ I−T is quasi-Fredholm
andT has SVEP atλ , soλ I−T is upper semi B-Browder, by Theorem 3, i.e.
λ /∈ σubb(T).

(ii) By Theorem 6, σlbb(T) ⊆ σqf(T) ∪ accσs(T). Conversely, if
λ /∈ σqf(T)∪ acc σs(T). Thenλ I −T is quasi-Fredholm andT∗ has SVEP
at λ , soλ I −T is lower semi B-Browder, by Theorem 4, i.e.λ /∈ σlbb(T).

(iii) This follows from part (i), part (ii), and from the equalities
σ(T) = σa(T)∪σs(T) andσbb(T) = σubb(T)∪σlbb(T). ut

Note that if accσa(T) = /0 thenσubb(T) = σqf(T). The next two results
shows that this equality also holds wheneverσa(T) coincides with the bound-
ary the spectrum∂σ(T) (generally,σa(T) contains∂σ(T), see [1, Theorem
2.42]).

Theorem 7 Let T∈L(X) be an operator for whichσa(T)= ∂σ(T)⊆accσ(T).
Then

σqf(T) = σubb(T) = σubw(T) = σa(T) = σub(T) = σuw(T) = σk(T). (14)

Proof. The assumption entails thatT has SVEP. Indeed,T has the SVEP
at every point of the boundary as well as at every pointλ which belongs to
the remaining part of the spectrum, sinceλ /∈ σa(T). Therefore the equalities
σqf(T) = σubb(T) = σubw(T) hold by Corollary 2.

We prove thatσubb(T) = σa(T). The inclusionσubb(T)⊆ σa(T) is true for
every operator, since by Theorem 1 and Theorem 3 a bounded below operator
is upper semi B-Browder. Conversely, suppose thatλ /∈ σubb(T). Thenλ I−T
is quasi-Fredholm and the SVEP forT entails, by Theorem 2.7 of [3] that
σa(T) does not cluster atλ . Clearly, λ /∈ σa(T), otherwiseλ would be an
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isolated point ofσa(T) = ∂σ(T), contradicting our assumption that every
λ ∈ ∂σ(T) is not isolated inσ(T). Henceσa(T) ⊆ σubb(T), from which we
conclude thatσa(T) = σubb(T).
Evidently, σa(T) ⊆ σub(T) holds for every operator. Now, letλ /∈ σub(T).
Thenλ /∈σubb(T) and the SVEP oT atλ , again by Theorem 2.7 of [3], implies
that λ /∈ accσa(T). Hence, by Corollary 3,λ /∈ σqf(T) = σa(T). Therefore,
σa(T) = σub(T) . Finally, the SVEP ofT implies, by Remark 3, thatσub(T) =
σuw(T) and from the inclusions (13) we obtainσqf(T) = σk(T) = σa(T), so
the proof of the equalities (14) is complete. ut

Dually we have:

Theorem 8 Let T∈L(X) be an operator for whichσs(T)=∂σ(T)⊆accσ(T).
Then

σqf(T) = σlbb(T) = σlbw(T) = σs(T) = σlb(T) = σlw(T) = σk(T). (15)

Proof. The assumption entails thatT∗ has SVEP. Indeed,T has the SVEP
at every point of the boundary∂σ(T∗) = ∂σ(T), as well as at every pointλ
which belongs to the remaining part ofσ(T∗), sinceλ /∈ σs(T). Therefore the
equalitiesσqf(T) = σlbb(T) = σlbw(T) hold by Corollary 2.

We showσlbb(T) = σs(T). The inclusionσlbb(T)⊆ σs(T) is clear for ev-
ery operator, since by Theorem 1 and Theorem 3 a surjective operator is lower
semi B-Browder. Conversely, suppose thatλ /∈ σubb(T). Thenλ I−T is quasi-
Fredholm and the SVEP forT∗ implies, by Theorem 2.11 of [3], thatσs(T)
does not cluster atλ . Clearly,λ /∈ σs(T), otherwiseλ would be an isolated
point of σs(T) = ∂σ(T), contradicting the assumption thatλ ∈ ∂σ(T) is not
isolated inσ(T). Henceσs(T)⊆ σlbb(T), and consequentlyσs(T) = σlbb(T).
The inclusionσs(T)⊆ σlb(T) holds for every operator. Letλ /∈ σlb(T). Then
λ /∈ σlbb(T) and the SVEP ofT∗ atλ implies, always by Theorem 2.11 of [3],
thatλ /∈ accσs(T). Hence, by Corollary 3,λ /∈ σqf(T) = σs(T), so the equal-
ity σs(T) = σlb(T) is proved. Finally, the SVEP ofT∗ implies, by Remark 3,
that

σlb(T) = σub(T∗) = σub(T∗) = σlw(T)

and from the inclusions (13) we obtain

σqf(T) = σk(T) = σs(T),

so the proof of the equalities (15) is complete. ut
Theorem 7 and Theorem 8 provide an useful tool for determining the var-

ious spectra above considered in the case whereT ∈ L(X) is a non-invertible
isometry. Indeed, a non-invertible isometryT has SVEP, since its spectrum is
the unit discD andσa(T) coincides with the boundary ofD, see [14, p. 80].



B-Browder spectra and localized SVEP 255

Theorem 7 also applies to theCeśaro operator Cp on the classical Hardy
spaceHp(D), whereD is the open unit disc and 1< p < ∞, defined by

(Cp f )(λ ) :=
1
λ

∫
λ

0

f (µ)
1−µ

dµ , for all f ∈ Hp(D) andλ ∈ D.

The spectrum of the operatorCp is the closed discΓp centered atp2 with radius
p
2 , see [16], andσa(Cp) = ∂Γp.
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Generalized Weyl’s theorems for polaroid operators

C. CARPINTERO, D. MUNOZ, E. ROSAS, O. GARCÍA AND J. SANABRIA

ABSTRACT. In this paper we establish necessary and sufficient conditions on bounded linear oper-
ators for which generalized Weyl’s theorem, or generalized a-Weyl theorem, holds. We also consider
generalized Weyl’s theorems in the framework of polaroid operators and obtain improvements of
some results recently established in [20] and [29].

1. INTRODUCTION AND TERMINOLOGY

Throughout this paper L(X) denotes the algebra of all bounded linear opera-
tors acting on an infinite- dimensional complex Banach space X . For T ∈ L(X),
we denote by N(T ) the null space of T and by R(T ) = T (X) the range of T . We
denote by α(T ) := dim N(T ) the nullity of T and by β(T ) := codim R(T ) =
dimX/R(T ) the defect of T . Other two classical quantities in operator theory
are the ascent p = p(T ) of an operator T , defined as the smallest non-negative
integer p such that N(T p) = N(T p+1) ( if such an integer does not exist, we put
p(T ) = ∞), and the descent q = q(T ), defined as the smallest non-negative in-
teger q such that R(T q) = R(T q+1) (if such an integer does not exist, we put
q(T ) = ∞). An operator T ∈ L(X) is said to be Fredholm (respectively, upper semi
-Fredholm, lower semi-Fredholm), if α(T ), β(T ) are both finite (respectively, R(T )
closed and α(T ) < ∞ , β(T ) < ∞). T ∈ L(X) is said to be semi-Fredholm if
T is either an upper semi-Fredholm or a lower semi-Fredholm operator. If T is
semi-Fredholm the index of T defined by ind T := α(T ) − β(T ). Other two im-
portant classes of operators in Fredholm theory are the classes of semi-Browder
operators. These classes are defined as follows, T ∈ L(X) is said to be Browder
(resp. upper semi-Browder, lower semi-Browder) if T is a Fredholm (respectively,
upper semi-Fredholm, lower semi-Fredholm) and both p(T ), q(T ) are finite (re-
spectively, p(T ) < ∞, q(T ) < ∞). A bounded operator T ∈ L(X) is said to be up-
per semi-Weyl (respectively, lower semi-Weyl) if T is upper Fredholm operator (re-
spectively, lower semi-Fredholm) and index ind T ≤ 0 (respectively, ind T ≥ 0).
T ∈ L(X) is said to be Weyl if T is both upper and lower semi-Weyl, i.e. T is
a Fredholm operator having index 0. The Browder spectrum and the Weyl spec-
trum are defined, respectively, by σb(T ) := {λ ∈ C : λI − T is not Browder} and
σw(T ) := {λ ∈ C : λI − T is not Weyl}.

Since every Browder operator is Weyl then σw(T ) ⊆ σb(T ). Analogously,
The upper semi-Browder spectrum and the upper semi-Weyl spectrum are defined,
respectively, by σub(T ) := {λ ∈ C : λI − T is not upper semi-Browder}, and
σuw(T ) := {λ ∈ C : λI − T is not upper semi-Weyl}.
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Given n ∈ N, we denote by Tn the restriction of T ∈ L(X) on the subspace
R(Tn) = Tn(X). According [16] and [14], T is said to be semi B-Fredholm (re-
spectively, B-Fredholm, upper semi B-Fredholm, lower semi B-Fredholm), if for some
integer n ≥ 0 the range R(Tn) is closed and Tn, viewed as a operator from the
space R(Tn) into itself, is a semi-Fredholm operator (respectively, Fredholm, up-
per semi-Fredholm, lower semi-Fredholm) . Analogously, T ∈ L(X) is said to be
B-Browder (respectively, upper semi B-Browder, lower semi B-Browder), if for some
integer n ≥ 0 the range R(Tn) is closed and Tn is a Browder operator (respec-
tively, upper semi-Browder, lower semi -Browder). If Tn is a semi-Fredholm op-
erator, it follows from ([14, Proposition 2.1]) that also Tm is semi-Fredholm for
every m ≥ n, and ind Tm = ind Tn. This enables us to define the index of semi
B-Fredholm operator T as the index of the semi-Fredholm operator Tn. Thus, a
bounded operator T ∈ L(X) is said to be a B-Weyl operator if T is a B-Fredholm
operator having index 0, T ∈ L(X) is said to be upper semi B-Weyl if T is upper
semi B-Fredholm with index ind T ≤ 0, and T is said to be lower semi B-Weyl if T
is lower semi B-Fredholm with ind T ≥ 0. Note that if T is B-Fredholm then also
T ∗ is B-Fredholm with ind T ∗ = −ind T .

The classes of operators defined above motivate the definitions of several spec-
tra. The upper semi B-Browder spectrum is defined by σubb(T ) := {λ ∈ C : λI −
T is not upper semi B-Browder}. The lower semi B-Browder spectrum is defined by
σlbb(T ) := {λ ∈ C : λI − T is not lower semi B-Browder}, while the B-Browder
spectrum is defined, by σbb(T ) = {λ ∈ C : λI − T is not B-Browder}. Clearly,
σbb(T ) = σubb(T ) ∪ σlbb(T ). The B-Weyl spectrum is defined, by σbw(T ) := {λ ∈
C : λI − T is not B-Weyl}, the upper semi B-Weyl spectrum and lower semi B-Weyl
spectrum are defined, respectively, by σubw(T ) := {λ ∈ C : λI − T is not up-
per semi B-Weyl}, and σlbw(T ) := {λ ∈ C : λI − T is not lower semi B-Weyl}.
Two other classes of operators related with semi B-Fredholm operators are the
quasi-Fredholm operators and Drazin invertible operators defined in the sequel.
T ∈ L(X) is said to be Drazin invertible if p(T ) = q(T ) < ∞. A bounded operator
T ∈ L(X) is said to be left Drazin invertible if p := p(T ) < ∞ and T p+1(X) is
closed, while T ∈ L(X) is said to be right Drazin invertible if q := q(T ) < ∞ and
T q(X) is closed. Clearly, T is Drazin invertible if and only if T is both right and
left Drazin invertible. Define

∆(T ) := {n ∈ N : m ≥ n,m ∈ N⇒ Tn(X) ∩ ker T ⊆ Tm(X) ∩ ker T}.
The degree of stable iteration is defined as dis(T ) := inf ∆(T ) if ∆(T ) 6= ∅, while
dis(T ) = ∞ if ∆(T ) = ∅.

Definition 1.1. T ∈ L(X) is said to be quasi-Fredholm of degree d, if there exists
d ∈ N such that:

(a) dis(T ) = d,
(b) Tn(X) is a closed subspace of X for each n ≥ d,
(c) T (X) + ker T d is a closed subspace of X .

It should be noted that by Proposition 2.5 of [14] every semi B-Fredholm oper-
ator is quasi-Fredholm. The quasi-Fredholm spectrum is defined as σqf(T ) := {λ ∈
C : λI − T is not quasi-Fredholm}, while the Drazin spectrum and the left Drazin
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spectrum are defined, respectively, by σd(T ) := {λ ∈ C : λI − T is not Drazin
invertible }, and σld(T ) := {λ ∈ C : λI − T is not left Drazin invertible}.
Theorem 1.2. ([4]) If T ∈ L(X) then σld(T ) = σubb(T ) and σd(T ) = σbb(T ).

Lemma 1.3. ([26]) If T ∈ L(X) and p = p(T ) < ∞ then the following statements are
equivalent:

(i) There exists n ≥ p + 1 such that Tn(X) is closed;
(ii) Tn(X) is closed for all n ≥ p.

We now introduce an important property in local spectral theory, see [23] and
Chapter 3 of [1]. A bounded operator T ∈ L(X) is said to have the single valued
extension property at λ0 ∈ C (abbreviated, SVEP at λ0), if for every open disc
Dλ0 ⊆ C centered at λ0 the only analytic function f : Dλ0 → X which satisfies the
equation (λI − T )f(λ) = 0 for all λ ∈ Dλ0 , is the function f ≡ 0 on Dλ0 . The
operator T is said to have SVEP if T has the SVEP at every point λ ∈ C. Note that
(see [1, Theorem 3.8])

(1.1) p(λI − T ) < ∞⇒ T has SVEP at λ,

and dually

(1.2) q(λI − T ) < ∞⇒ T ∗ has SVEP at λ.

Two important subspaces in local spectral theory are the analytic core and the
quasi-nilpotent part of T . The analytic core K(T ) is the set of all x ∈ X such that
there exists a constant c > 0 and a sequence of elements xn ∈ X such that x0 =
x, Txn = xn−1, and ‖xn‖ ≤ cn‖x‖ for all n ∈ N, see [1] for information on K(T ).
The quasi-nilpotent part is defined by H0(T ) := {x ∈ X : limn→∞ ‖Tnx‖ 1

n = 0}.
Note that N(Tn) ⊆ H0(T ) for all n ∈ N and (see Chapter 2 of [1]),

(1.3) H0(λI − T ) closed ⇒ T has SVEP at λ.

Recall that T ∈ L(X) is said to be bounded below if T is injective and has closed
range. Denote by σap(T ) the classical approximate point spectrum defined by σap(T )
:= {λ ∈ C : λI − T is not bounded below}. Note that if σs(T ) denotes the surjec-
tivity spectrum σs(T ) := {λ ∈ C : λI − T is not onto}, then σap(T ) = σs(T ∗) and
σs(T ) = σap(T ∗).

It is easily seen from definition of localized SVEP that

(1.4) λ /∈ acc σap(T ) ⇒ T has SVEP at λ,

where acc K means the set of all accumulation points of K ⊆ C, and if T ∗ denotes
the dual of T then

(1.5) λ /∈ acc σs(T ) ⇒ T ∗ has SVEP at λ,

Remark 1.4. The implications (1.1), (1.2), (1.3), (1.4) and (1.5) are actually equiv-
alences whenever T ∈ L(X) is semi-Fredholm, or more in general quasi semi-
Fredholm (see [1, Chapter 3] and [3]).

Denote by iso K the set of all isolated points of K ⊆ C. According Berkani
and Koliha [15], a bounded operator T ∈ L(X) is said to satisfy generalized Weyl’s
theorem if σ(T ) \ σbw(T ) = E(T ), where E(T ) = {λ ∈ iso σ(T ) : 0 < α(λI − T )}.
Similarly, a bounded operator T ∈ L(X) is said to satisfied generalized a-Weyl’s



4 C. Carpintero, D. Munoz, E. Rosas, O. Garcı́a and J. Sanabria

theorem if σap(T ) \ σubw(T ) = Ea(T ), where Ea(T ) := {λ ∈ iso σap(T ) : 0 <
α(λI − T )}.

Generalized Weyl’s theorems have been studied by several authors ([10], [11],
[17] and [20]). In this paper we obtain necessary and sufficient conditions for
which generalized Weyl’s theorems, or generalized a-Weyl’s theorem, holds for
T . We also consider the case when generalized Weyl’s theorems, or generalized
a-Weyl’s theorem, is transmitted from T to its dual T ∗, or to the Hilbert adjoint T ′

in the case of a Hilbert space operator. Furthermore, we study both generalized
Weyl’s theorems in the framework of polaroid operators, improving results of
[21] concerning Weyl’s theorem and a-Weyl’s theorem for polaroid operators see
([16].[22]). Our results are applied then to some special classes of operators and,
as a consequence, we extend the results of recent papers [20], [29] and [18].

2. GENERALIZED WEYL’S THEOREM

For a bounded operator T , let Π00(T ) := {λ ∈ σ(T ) : λI − T is B-Browder}.
Observe that in general, Π00(T ) ⊆ E(T ).

A bounded operator T ∈ L(X) is said to satisfy Browder’s theorem if σw(T ) =
σb(T ), while T is said to satisfy generalized Browder’s theorem if σbw(T ) = σbb(T ).

Theorem 2.1. If T ∈ L(X) the following statements are equivalent:
(i) T satisfies Browder’s theorem;
(ii) T satisfies generalized Browder’s theorem;
(iii) T has SV EP at all λ /∈ σbw(T );
(iv) T ∗ has SV EP at all λ /∈ σbw(T );
(v) T ∗ satisfies generalized Browder’s theorem.

Proof. A proof the equivalence (i) ⇔ (ii) may be found in [4]. For the equivalence
(ii) ⇔ (iii) ⇔ (iv) ⇔ (v), see [6].

Clearly from Theorem 2.1 we have: T or T ∗ has SVEP implies Browder’s theo-
rem holds for T and T ∗.

If T ∈ L(X) let define E](T ) := {λ ∈ σ(T ) : p(λI − T ) = q(λI − T ) < ∞}.
E](T ) is exactly the set of poles of the resolvent of T ([25, Proposition 50.2]).

Clearly, every pole of the resolvent is an isolated point of the spectrum and it is
also an eigenvalue, so E](T ) ⊆ E(T ) for every T ∈ L(X).

Note that for T ∈ L(X) satisfies the generalized Weyl’s theorem, then T sat-
isfies the generalized Browder’s theorem and in general the converse does not
hold. Observe that E](T ) = σ(T ) \σb(T ) = σ(T ) \σbb(T ) = σ(T ) \σwb(T ), when-
ever T has the SVEP on σ(T ) \ σwb(T ). In consequence, we have the following
theorem.

Theorem 2.2. Let T ∈ L(X). Then T satisfies the generalized Weyl’s theorem if and
only if, T satisfies one of the equivalent conditions (i)-(v) of Theorem 2.1 and E](T ) =
E(T ).

Example 2.3. Let X = `p(N), 1 < p < ∞, and let the unilateral right weighted
shift R be defined by

R(x1, x2, x3, ...) = (
x2

2
,
x3

3
,
x4

4
, ...) for all x = (xn) ∈ `p(N).
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It is easily seen that R is quasi-nilpotent, p(R) = ∞ and hence E](R) = ∅. On the
other hand, α(R) = 1, so E(R) = {0}.

Definition 2.4. [24] Let T ∈ L(X) and let d ∈ N. Then T has uniform descent for
n ≥ d, if R(T ) + N(Tn) = R(T ) + N(T d) for all n ≥ d. If in addition R(T ) + N(T d)
is closed then T is said to have a topological uniform descent for n ≥ d.

Note that every quasi-Fredholm operator has topological uniform descent [16].

Theorem 2.5. For an operator T ∈ L(X), the following statements are equivalent:
(i) E(T ) = E](T );
(ii) σbb(T ) ∩ E(T ) = ∅;
(iii) σbw(T ) ∩ E(T ) = ∅;
(iv) σqf (T ) ∩ E(T ) = ∅;
(v) If λ ∈ E(T ) then q := q(λI−T ) < ∞ and (λI−T )n(X) is closed for all n ≥ q;
(vi) If λ ∈ E(T ) then p := p(λI−T ) < ∞ and (λI−T )n(X) is closed for all n ≥ p;

(vii) If λ ∈ E(T ) then there exists n = n(λ) ∈ N such that H0(λI − T ) = N(λI −
T )n.

(viii) λI − T has a topological uniform descent for all λ ∈ E(T )

Proof.
(i) ⇒ (ii) Clearly, by Corollary 3.4 of [19] we have σbb(T ) ∩ E(T ) = σd(T ) ∩

E](T ) = ∅.
(ii) ⇒ (iii) Obvious, since σbw(T ) ⊆ σbb(T ).
(iii)⇒ (iv) Every semi B-Fredholm operator is quasi-Fredholm, hence σqf (T ) ⊆

σbw(T ).
(iv) ⇒ (v) By assumption, σqf (T ) ∩ E(T ) = ∅, hence if λ ∈ E(T ) then λI − T

is quasi-Fredholm. Now, if λ ∈ E(T ) then λ is an isolated point of σ(T ) = σ(T ∗),
thus both T and T ∗ have SVEP at λ. By Theorem 3.3 of [19] then λI − T is right
Drazin invertible, so q := q(λI − T ) < ∞ and (λI − T )q(X) = (λI − T )n(X) is
closed for all n ≥ q.

(v) ⇒ (vi) If λ ∈ E(T ) then λ is an isolated point of σ(T ), hence T has SVEP
at λ. By assumption q = q(λI − T ) < ∞ and (λI − T )q(X) is closed, hence
λI − T is right Drazin invertible, or equivalently, by [19, Theorem 3.3], lower
semi B-Browder. Therefore λI − T is quasi-Fredholm and the SVEP of T at λ
implies that λI − T is left Drazin invertible, see Theorem 3.2 of [19]. Therefore,
p := p(λI − T ) < ∞. By Theorem 3.3 of [1] then p(λI − T ) = q(λI − T ) and
(λI − T )p(X) = (λI − T )q(X) = (λI − T )n(X) is closed for all n ≥ p.

(vi)⇒ (vii) Suppose that if λ ∈ E(T ) then p := p(λI−T ) < ∞ and (λI−T )n(X)
is closed for all n ≥ p. Obviously, λI−T is left Drazin invertible, and since λ is an
isolated point of σ(T ) the SVEP at λ for T entails that H0(λI − T ) = N(λI − T )n)
for some n ∈ N, see [3, Theorem 2.7].

(vii) ⇒ (i) We have only to show that E(T ) ⊆ E](T ). If λ ∈ E(T ) then there
exists ν = ν(λ) ∈ N such that H0(λI − T ) = N [(λI − T )ν ]. Since λ is an isolated
point of σ(T ) then, by [1, Theorem 3.74], X = H0(λI−T )⊕K(λI−T ) = N [(λI−
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T )ν ] ⊕ K(λI − T ), hence (λI − T )ν(X) = (λI − T )ν(K(λI − T )) = K(λI − T ).
Consequently, X = N [(λI−T )ν ]⊕R[(λI−T )ν ] and this implies that p(λI−T ) =
q(λI − T ) ≤ ν, see [1, Theorem 3.6]. Therefore λ ∈ E](T ), thus the equality
E(T ) = E](T ) is proved.

(viii) ⇔ (i) This equivalence has been proved by Cao in [17].

Corollary 2.6. Suppose that T ∈ L(X) satisfies one of the equivalent conditions (i)-(v)
of Theorem 2.1. Then generalized Weyl’s theorem holds for T if and only if one of the
equivalent conditions (i)-(viii) of Theorem 2.5 holds. In particular, if T or T ∗ has SVEP
then generalized Weyl’s theorem holds for T if and only if one of the equivalent conditions
(i)-(viii) of Theorem 2.5 holds.

In the next result, we consider a generalized Weyl’ s theorem for T ∗. Note that
generalized Weyl’s theorem is not generally transferred by duality. For instance,
if R is the right shift defined in Example 2.3 then its dual L := R∗ satisfies a
generalized Weyl’s theorem, while its dual L∗ = R does not satisfy generalized
Weyl’s theorem.

Theorem 2.7. ([1]). Suppose that T satisfies generalized Weyl’s theorem. Then the
following conditions are equivalent:

(i) T ∗ satisfies generalized Weyl’s theorem;
(ii) E(T ∗) = E(T );

(iii) E(T ∗) ⊆ E(T ).

A bounded operator T ∈ L(X) is said to be polaroid if iso σ(T ) = ∅ or every
isolated point of σ(T ) is a pole of the resolvent, i.e. iso σ(T ) = E](T ). Every
polaroid operator is isoloid, i.e. every isolated point of σ(T ) is an eigenvalue of T .
In the proof of Theorem 2.7 we have seen that if λ is a pole of the resolvent of T
then λ is a pole of the resolvent of T ∗. Since iso σ(T ) = iso σ(T ∗) then follows if
T is polaroid then T ∗ is polaroid.

Theorem 2.8. Suppose that T ∈ L(X) is polaroid. If T satisfies Browder’s theorem then
both T and T ∗ satisfy generalized Weyl’s theorem.

Proof. By Theorem 2.2 and Theorem 2.1, it suffices to prove E(T ) = E](T ). We
need only to prove the following inclusions E(T ) ⊆ E](T ), E(T ∗) ⊆ E](T ∗) and
these are clear since T is polaroid if and only if T ∗ is polaroid.

Let H(σ(T )) denote the set of all analytic functions defined on an open neigh-
borhood of σ(T ) and define, by the classical functional calculus, f(T ) for every
f ∈ H(σ(T )).

Theorem 2.9. Suppose that T ∈ L(X) is isoloid and T or T ∗ has SVEP. If generalized
Weyl’s theorem holds for T then generalized Weyl’s theorem holds for f(T ) for every
f ∈ H(σ(T )).

Proof. If T or T ∗ has SVEP then the spectral mapping theorem holds for σbw(T ),
see Theorem 3.4 of [6]. By Theorem 2.1 of [18] then then generalized Weyl’s the-
orem holds for f(T ) for every f ∈ H(σ(T )) (note that in [18] this result is stated
in the case of Hilbert space operators, but the proof works also for Banach space
operators).
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Theorem 2.10. If T ∈ L(X) is polaroid and either T or T ∗ has SVEP then generalized
Weyl’s theorem holds for f(T ) and f(T ∗) = f(T )∗ for all f ∈ H(σ(T )).

Proof. We have seen that Browder’s theorem holds for T and T ∗ whenever either
T or T ∗ have SVEP. Hence, by Theorem 2.8, both T and T ∗ satisfy generalized
Weyl’s theorem. Now, T and T ∗ are isoloid, and hence by Theorem 2.9 f(T ), as
well as f(T ∗), satisfies generalized Weyl’s theorem for all f ∈ H(σ(T )).

In the case of operators defined on Hilbert spaces instead of the dual T ∗ it is
more appropriate to consider the Hilbert adjoint T ′ of T ∈ L(H). From classical
Fredholm theory we have σw(T ′) = σw(T ∗) = σw(T ) and σb(T ′) = σb(T ∗) =
σb(T ).

Note that (see [2]) T ∗ has SVEP if and only if T ′ has SVEP, so if T ′ has SVEP
then Browder’s theorem holds for T and T ′.

Theorem 2.11. Suppose that T ∈ L(H), H a Hilbert space, is polaroid. If T satisfies
Browder’s theorem then both T and T ′ satisfy generalized Weyl’s theorem.

Theorem 2.12. Suppose that T ∈ L(H), H a Hilbert space, is polaroid. If either T or
T ′ satisfies SVEP then generalized Weyl’s theorem holds for f(T ) and f(T ′) = f(T )′ for
every f ∈ H(σ(T )).

Proof. The SVEP for T or T ′ entails Browder’s theorem for T and T ′. General-
ized Weyl’s theorem for f(T ) is clear by Theorem 2.10. To show that generalized
Weyl’s theorem hold for f(T ′) observe first that generalized Weyl’s theorem holds
for T ′ by Theorem 2.11. The argument of the proof of Theorem 2.11 shows that T ′

is polaroid, hence isoloid. By [29, Theorem 2.2] then generalized Weyl’s theorem
holds for f(T ) and f(T ′) = f(T )′ for every f ∈ H(σ(T )).

The class of polaroid operators is rather large. In [28] the class of H(p)-operators
was introduced and defined as the class of all T ∈ L(X) such that for all λ ∈ C
there exists an integer p := p(λ) such that H0(T − λI) = N(T − λI)p. Property
H(p) is satisfied by every generalized scalar operator, and in particular for p-
hyponormal, log-hyponormal, M-hyponormal operators on Hilbert spaces. Fur-
thermore, every multiplier of a commutative semi-simple Banach algebra is H(1),
see [1, Theorem 4.33]. A remarkable result of Oudghiri ([28, Theorem 3.4]) shows
that, T is H(p) if and only if there exists a function f ∈ H(σ(T ) not identically
constant in any component of its domain such that f(T ) is H(p), or equivalently
that f(T ) is H(p) for all f ∈ H(σ(T )). Every H(p)-operator T is polaroid [2] and
obviously, by (1.3), has SVEP. Therefore, Theorem 2.10 applies to T and, conse-
quently, T satisfies generalized Weyl’s theorem. This result may considerably be
extended as follows:

Corollary 2.13. Suppose that T ∈ L(X) is H(p) on a Banach space X and f ∈ H(σ(T )
is an analytic function not identically constant in any component of its domain. Then
f(T ) and f(T )∗ satisfy generalized Weyl’s theorem. If T ∈ L(H) is a H(p) operator on
a Hilbert space H then f(T ′) = f(T )′ satisfies generalized Weyl’s theorem.

Proof. f(T ) is a H(p)-operator and hence is polaroid and has SVEP. By Theorem
2.10 then f(T ) satisfies generalized Weyl’s theorem and hence, by Theorem 2.8
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(respectively, by Theorem 2.11) also f(T ∗) = f(T )∗ (respectively, f(T ′) = f(T )′

satisfies generalized Weyl’s theorem.

We have already observed that every M -hyponormal operator T is a H(p)-
operator. A bounded operator is said to be analytically M-hyponormal (respec-
tively, algebraically M-hyponormal) if there exists an analytic function h ∈ H(σ(T )
not identically constant in any component of its domain(respectively, a non trivial
polynomial h) such that h(T ) is M-hyponormal. Clearly, by Oudhiri’s result ev-
ery algebraically M-hyponormal operator, and more in general every analytically
M-hyponormal operator, is H(p), so that Corollary 2.13 extends and subsumes
Theorem 4.7 of [20].

A bounded operator T ∈ L(X) on a Banach space X is said to be paranormal if
‖Tx‖2 ≤ ‖T 2x‖‖x‖ holds for all x ∈ X . Every paranormal operator on a Hilbert
space has SVEP, see [8]. An operator T ∈ L(X) for which there exists a complex
nonconstant polynomial h such that h(T ) is paranormal is said to be algebraically
paranormal. Every algebraic paranormal operator defined on a Hilbert space is
polaroid see [7] and satisfies generalized Weyl’s theorem.

Corollary 2.14. Suppose that T ∈ L(H), H a Hilbert space, is algebraically paranormal.
Then both f(T ) and f(T )′ satisfy generalized Weyl’s theorem for all f ∈ H(σ(T ) .

Proof. Suppose that h(T ) is paranormal for some polynomial h. Then h(T ) has
SVEP and hence, by [1, Theorem 2.40], T has SVEP. Moreover, T is polaroid. By
Theorem 2.12 then generalized Weyl’s theorem holds for f(T ) and f(T ′).

Corollary 2.14 extends Theorem 4.14 of [20] and Theorem 3.1 of [29], while
Theorem 2.10 subsumes all these results.

3. GENERALIZED a-WEYL’S THEOREM

In this section by using similar methods to those employed in the previous
section, we characterize the bounded linear operators which satisfy generalized
a-Weyl’s theorem. For a bounded operator T ∈ L(X), we let

Πa
00(T ) := σap(T ) \ σubb(T ) = {λ ∈ σap(T ) : λI − T is upper semi B-Browder}.

We have that Πa
00(T ) ⊆ Ea(T ) for any operator T ∈ L(X).

A bounded operator T ∈ L(X) is said to satisfy a-Browder’s theorem if σuw(T ) =
σub(T ), while T is said to satisfy generalized a-Browder’s theorem if σubw(T ) = σubb(T ).

Theorem 3.1. If T ∈ L(X) the following statements are equivalent:

(i) T satisfies a-Browder’s theorem;

(ii) T satisfies generalized Browder’s theorem;

(iii) T has SV EP at all λ /∈ σuw(T );

(iv) T has SV EP at all λ /∈ σubw(T ).

Proof. A proof the equivalence (i)⇔ (ii) may be found in [4]. For the equivalences
(i) ⇔ (iii) and (ii) ⇔ (iii) see [5] and [9].
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From Theorem 3.1 follows that if T has SVEP then a-Browder’s theorem, or
equivalently generalized a-Browder’s theorem holds for T . Note that also the
SVEP for T ∗ entails both Browder’s theorems, see [9, Corollary 2.10].

Definition 3.2. Let T ∈ L(X). λ ∈ C is said to be a left pole of the resolvent of T , if
λ ∈ σap(T ) and λI − T is left Drazin invertible.

In the sequel we set Ea
](T ) := {λ ∈ σap(T ) : λ is a left pole of the resolvent o T}.

Theorem 3.3. Let T ∈ L(X). Then T satisfies the generalized a-Weyl’s theorem if and
only if T satisfies one of the equivalent condition (i)-(iv) of Theorem 3.1 and Ea(T ) =
E]

a(T ).

Proof. It suffices to prove the equality Πa
00(T ) = E]

a(T ).

Theorem 3.4. For a bounded operator T ∈ L(X) the following statements are equiva-
lent:

(i) Ea(T ) = E]
a(T );

(ii) σubb(T ) ∩ Ea(T ) = ∅;
(iii) σubw(T ) ∩ Ea(T ) = ∅;
(iv) σqf (T ) ∩ Ea(T ) = ∅;
(v) for every λ ∈ Ea(T ) there exists d = d(λ) ∈ N, such that H0(λI − T ) =

N(λI − T )d and (λI − T )n(X) is closed for all n ≥ d;
(vi) for every λ ∈ Ea(T ) then p := p(λI − T ) < ∞ and (λI − T )n(X) is closed for

all n ≥ p.

Theorem 3.5. If T ∈ L(X) then the following statements holds:
(i) If T ∗ has SVEP then σubw(T ) = σbw(T ).
(ii) If T has SVEP then σubw(T ∗) = σbw(T ∗).

Proof. See [1]

A bounded operator T ∈ L(X) is said to be a-polaroid if iso σap(T ) = ∅ or every
isolated point of σap(T ) is a pole of the resolvent, i.e. iso σap(T ) = E]

a(T ). Every
a-polaroid operator is a- isoloid.

Theorem 3.6. Suppose that T ∈ L(X) is a-isoloid. If T or T ∗ has SVEP and generalized
a-Weyl’s theorem holds for T then generalized a-Weyl’s theorem holds for f(T ) for every
f ∈ H(σ(T )).

Proof. If T or T ∗ has SVEP then the spectral mapping theorem holds for σuw(T ),
see Corollary 3.72 of [1]. By Theorem 2.2 of [18] it then follows that a-Weyl’s
theorem holds for f(T ) for every f ∈ H(σ(T )).

Theorem 3.7. Suppose that T ∈ L(X) is polaroid. Then we have:
(i) If T ∗ has SVEP then generalized a-Weyl theorem holds for f(T ) for all f ∈

H(σ(T )).
(ii) If T has SVEP then generalized a-Weyl theorem holds for f(T ∗) for all f ∈

H(σ(T )).



10 C. Carpintero, D. Munoz, E. Rosas, O. Garcı́a and J. Sanabria

Corollary 3.8. Let T be a Hilbert space operator.
(i) If T ′ is a H(p)-operator or is algebraically paranormal then generalized a-Weyl’s

theorem holds for f(T ) for all f ∈ H(σ(T )) .
(ii) If T is is a H(p)-operator or an algebraically paranormal operator then generalized

a-Weyl’s theorem holds for f(T ′) for all f ∈ H(σ(T )).

The result of Corollary 3.8, part (i), in the case of being T ′ algebraically para-
normal, has been proved in [29, Theorem 3.2] by using different methods. Corol-
lary 3.8, part (i), also subsumes Theorem 3.3 of [18], where was considered the
case where T ′ is p-hyponormal or M -hyponormal.
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Resumen

Dado (X, mX) un m-espacio, se introduce el concepto de conjunto
mX -g-cerrado como una generalización de las definiciones de varias cla-
ses de conjuntos cerrados generalizados. Se obtiene un nuevo axioma de
separación, denominado mX − T1/2 y se caracterizan éstos. También se
estudian las relaciones entre los m-espacio mX − T1/2 y los m-espacio
mX − T0 y mX − T1.
Palabras Claves: mX -estructura, conjunto cerrado generalizado, m-
espacio mX − T 1

2
.

Abstract

Given (X, mX) an m-space, we introduce the concept of mX -g-closed
set as a generalization of the definitions of several classes of generalized
closed sets. Also we obtain and characterize a new separaton axiom
called mX − T1/2. Also we study the relations between the m-space
mX − T1/2 and the m-spaces mX − T0 and mX − T1.
Key words and phrases: mX -structure, generalized closed set, m-
space mX − T 1

2
.

1 Introducción

Los conjuntos cerrados, semi-cerrados, α-semi-cerrados y (α, β)-semi-cerrados
han sido utilizados por varios autores para definir diferentes clases de conjun-
tos cerrados generalizados y con estos introducir nuevos axiomas de separa-
ción.
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En 1963, Levine [5] introduce el concepto de conjuntos g-cerrados y en 1991
Ogata [7] define los espacios T1/2, también introduce las nociones de conjuntos
s-g-cerrados y espacios semi-T1/2. En el 2000 Rosas, Carpintero, Vielma y
Salas [12] estudian el concepto de conjuntos α-sg-cerrado y caracterizan los
espacios α-semi-T1/2. En el 2005 Rosas, Carpintero y Sanabria [11] definen los
conjuntos (α, β)-sg-cerrados y estudian los espacios (α, β)-semi-T1/2.

En este art́ıculo utilizamos la noción de estructura minimal mX sobre
un conjunto no vaćıo X dada por Maki [6] y definimos los conjuntos mX -g-
cerrados como una generalización de los conjuntos g-cerrados, sg-cerrado, α-g-
cerrado, α-sg-cerrado y (α, β)-sg-cerrado. También se definen y se caracterizan
los mX − T1/2 que genera
lizan, de forma natural, a los espacios T1/2, α − T1/2, semi-T1/2, α-semi-T1/2

y (α, β)-semi-T1/2.

2 Preliminares

Sea X un conjunto no vaćıo, se dice que α : P(X) → P(X) es un operador
expansivo sobre una familia Γ de subconjuntos de X si U ⊂ α(U) para todo
U ∈ Γ. Si (X, τ) es un espacio topológico y α es un operador expansivo sobre
la topoloǵıa τ , entonces diremos que α es un operador asociado a la topoloǵıa
τ [3]. Además, si α(A) ⊂ α(B) siempre que A ⊂ B, entonces decimos que el
operador α es monótono.

Si (X, τ) es un espacio topológico, α un operador expansivo sobre la topo-
loǵıa τ y A es un subconjunto de X, entonces ese dice que A es α-abierto [1] si
para cada x ∈ A existe un abierto U de x tal que α(U) ⊂ A. El complemento
de un conjunto α-abierto se denomina α-cerrado, se define la α-clausura de
un subconjunto A de X, abreviada por α − cl(A), como la intersección de
todos conjuntos α-cerrados que contienen a A. Se prueba que la α− cl(A) es
un conjunto α-cerrado. Un conjunto A es α-cerrado generalizado, abreviado
por α-g-cerrado, si α− cl(A) ⊂ U siempre que A ⊂ U y U es α-abierto. Todo
conjunto α-cerrado es α-g-cerrado. Se definen los espacios α−T 1

2
como aque-

llos espacios en los cuales los conjuntos α-g-cerrado y α-cerrado coinciden,
de modo que X es α − T 1

2
śı y solo si para todo x ∈ X se tiene que {x} es

α-cerrado o α-abierto. La colección de todos los subconjuntos α-abierto de X
se denota por τα

Un subconjunto A de X es α-semi-abierto [12] si existe un conjunto abierto
U ∈ τ tal que U ⊂ A ⊂ α(U). El complemento de un conjunto α-semi-abierto
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se denomina α-semi-cerrado. Se define la α-semi-clausura de A, abreviado
por α − scl(A), como la intersección de todos los conjuntos α-semi-cerrados
que contienen a A; si α es un operador monótono entonces α − scl(A) es
un conjunto α-semi cerrado. Se dice que A es un conjunto α-semi-cerrado
generalizado, abreviado por α-sg-cerrado, si α − scl(A) ⊂ U siempre que
A ⊂ U y U es un conjunto α-semi-abierto. Si α es monótono, todo conjunto
α-semi-cerrado es un conjunto α-sg-cerrado. Se dice que X es un espacio
α− semiT 1

2
si todo conjunto α-sg-cerrado es α-semi-cerrado, de modo que X

es α− semiT 1
2

śı y solo si para todo x ∈ X se tiene que {x} es α-semi-cerrado
o α-semi-abierto. La colección de todos los subconjuntos α-semi-abierto de X
se denota por α − SO(X). Si β es otro operador asociado a τ , entonces un
subconjunto A de X es (α, β)-semi-abierto [11] si para cada x ∈ A existe un
conjunto β-semi-abierto V tal que x ∈ V y α(V ) ⊂ A. El complemento de
un conjunto (α, β)-semi-abierto se denomina (α, β)-semi-cerrado. Se define la
(α, β)-semi-clausura de A, abreviada por (α, β)− scl(A), como la intersección
de todos los conjuntos (α, β)-semi-cerrados que contienen a A; se prueba que
(α, β) − scl(A) es un conjunto (α, β)-semi-cerrado. Un subconjunto A de X
es un conjunto (α, β)-semi-cerrado generalizado, abreviado (α, β)-sg-cerrado,
si (α, β) − scl(A) ⊂ U siempre que A ⊂ U y U es un conjunto (α, β)-semi-
abierto. Todo conjunto (α, β)-semi-cerrado es un conjunto (α, β)-sg-cerrado.
Se dice que X es un espacio (α, β)−semiT 1

2
si todo conjunto (α, β)-sg-cerrado

es (α, β)-semi-cerrado, de modo que X es (α, β) − semiT 1
2

śı y solo si para
todo x ∈ X se tiene que {x} es (α, β)-semi-cerrado o (α, β)-semi-abierto. La
colección de todos los subconjuntos (α, β)-semi-abierto de X se denota por
(α, β)− SO(X)

3 Estructuras Minimales

En esta sección se plantea el concepto de estructura minimal [6] y algunas
de sus propiedades. También se define la noción de m-espaciosmX − T1 y se
caracterizan en funci’on de sus conjuntos unitarios.

Definición 3.1. [6] Una estructura minimal o una mX -estructura sobre un
conjunto no vaćıo X, es una familia mX de subconjuntos de X tal que ∅ ∈ mX

y X ∈ mX .

El par (X, mX) formado por un conjunto no vaćıo X y una mX estructura
sobre X, se denomina m-espacio. Cada elemento de mX se denomina con-
junto mX -abierto y el complemento de un conjunto mX -abierto se denomina
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conjunto mX -cerrado. Si (X, τ) es un espacio topológico, α y β son opera-
dores asociados a la topoloǵıa entonces las colecciones τ , τα, α − SO(X) y
(α, β)− SO(X) son mX -estructuras.

Definición 3.2 ([6]). Sean (X, mX) un m-espacio y A un subconjunto de X,
se define la mX clausura de A, abreviada mX − cl(A), como la intersección
de todos los conjuntos mX -cerrados que contienen a A, es decir

mX − cl(A) =
⋂
{F : F ⊇ A,X \ F ∈ mX}

Observe que si X \ A ∈ mX , entonces mX − cl(A) = A, es decir, si A
es mX -cerrado, entonces mX − cl(A) = A; además A ⊂ mX − cl(A). Otras
propiedades de mX − cl(A), se enuncian en el siguiente teorema.

Teorema 3.1 ([6]). Sea (X, mX) un m-espacio, A y B subconjuntos de X.
Las siguientes se satisfacen.

1. mX − cl(∅) = ∅.

2. mX − cl(X) = X.

3. Si A ⊂ B, entonces mX − cl(A) ⊂ mX − cl(B).

4. mX − cl(A ∪B) ⊇ mX − cl(A) ∪mX − cl(B).

5. mX − cl (mX − cl(A)) = mX − cl(A).

Teorema 3.2 ([8]). Sea (X, mX) un m-espacio, A un subconjunto de X y
x ∈ X, entonces x ∈ mX − cl(A) si y sólo si U ∩A 6= ∅ para todo U ∈ mX tal
que x ∈ U .

Definición 3.3 ([6]). Si mX es una estructura minimal sobre X tal que la
unión de elementos de mX es un elemento de mX , entonces diremos que mX

satisface la condición (B) de Maki.

Observe que si mX satisface la condición (B) de Maki, entonces la inter-
sección de conjuntos mX -cerrados es un conjunto mX -cerrado y por tanto, si
A ⊂ X, entonces mX − cl(A) es un conjunto mX -cerrado.

Teorema 3.3. [6] Sea (X,mX) un m-espacio y A un subconjunto de X. Si
mX satisface la condición (B) de Maki entonces, A es mX-cerrado śı y sólo
si mX − cl(A) = A.
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En el teorema anterior, si la condición (B) de Maki es removida, es posible
tener un m-espacio (X, mX) y un subconjunto A de X para el cual mX −
cl(A) = A y A no sea un conjunto mX -cerrado, como se observa en el siguiente
ejemplo.

Ejemplo 1. Considere X = {a, b, c, d} con la siguiente mX estructura,

mX = {∅, X, {a}, {b}, {c}}.

Sea A = {c, d}. Observe que mX − cl(A) = A y A no es un conjunto mX -
cerrado.

Definición 3.4 ([10]). Sea (X, mX) un m-espacio, se dice que X es mX −T0

si para cada par de puntos distintos x, y ∈ X, existe U ∈ mX tal que x ∈ U
y y /∈ U o x /∈ U y y ∈ U .

Definición 3.5 ([9]). Se (X, mX) un m-espacio, se dice que X es mX − T2

si para cada par de puntos distintos x, y ∈ X, existen conjuntos disjuntos
U, V ∈ mX que contienen a x e y respectivamente.

Definición 3.6. Sea (X, mX) un m-espacio, se dice que X es mX − T1 si
para cada par de puntos distintos x, y ∈ X existen conjuntos U, V ∈ mX que
contienen a x e y respectivamente y satisfacen que y /∈ U y x /∈ V .

Observe que
mX − T2 ⇒ mX − T1 ⇒ mX − T0.

Los siguientes ejemplos muestran que existen m-espacios que son mX −T0

pero no mX − T1, y mX − T1 que no son mX − T2

Ejemplo 2. Considere el conjunto de los números reales R con la estructura
minimal

mR = {∅,R} ∪ {R \ {x} : x ∈ R}.
R es mR − T1, pues dado x, y ∈ R con x 6= y, podemos encontrar mR-abiertos
U = R \ {y} y V = R \ {x} que contienen a x e y respectivamente y x /∈ V ,
y /∈ U .

Supongamos que R es mR − T2, es decir, para x, y ∈ R con x 6= y existen
conjuntos U, V ∈ mR disjuntos tales que x ∈ U e y ∈ V . Entonces U = R\{a1}
y V = R\{a2} con a1 6= x y a2 6= y. Esto significa que U∩V = R\{a1, a2} 6= ∅
lo que implica que R no es mR − T2.
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Ejemplo 3. Consideremos R con la siguiente mR estructura

mR = {∅,R} ∪ {[x,∞) : x ∈ R} .

R es mR−T0 pues para x, y ∈ R con x < y, U = [y,∞) es mR-abierto y x /∈ U
e y ∈ U .
R no es mR − T1 pues cualquier mR-abierto U que contenga a x es de la

forma U = [a,∞) con a ≤ x y por tanto y ∈ U .

Los teoremas que se enuncian a continuación caracterizan las nociones de
mX − T0 y mX − T1.

Teorema 3.4. Sea (X, mX) un m-espacio, X es mX−T0 si y sólo si para todo
par de puntos distintos x, y ∈ X se cumple que mX−cl ({x}) 6= mX−cl ({y}).
Demostración. Supongamos que X es mX − T0 y sean x, y ∈ X tales que
x 6= y, entonces existe U ∈ mX tal que x ∈ U y y /∈ U o y ∈ U y x /∈ U . Sin
perdida de generalidad, podemos suponer que existe U ∈ mX tal que x ∈ U y
y /∈ U . Entonces si mX − cl ({x}) = mX − cl ({y}), se tiene x ∈ mX − cl ({y})
y por tanto, U ∩ {y} 6= ∅, en contradicción que y /∈ U . Aśı se debe tener
mX − cl ({x}) 6= mX − cl ({y}).

Rećıprocamente, sean x, y ∈ X tales que x 6= y y supongamos que mX −
cl ({x}) 6= mX − cl ({y}), entonces existe z ∈ X tal que z ∈ mX − cl ({x}) y
z /∈ mX − cl ({y}) o viceversa.

Sin perdida de generalidad, podemos suponer que z ∈ mX − cl ({x}) y
z /∈ mX − cl ({y}), entonces existe V ∈ mX tal que z ∈ V y V ∩ {y} = ∅ y
V ∩ {x} 6= ∅, es decir y /∈ V y x ∈ V , es decir, X es mX − T0.

Teorema 3.5. Sea (X,mX) un m-espacio. Si para cada x ∈ X se tiene que
{x} es mX-cerrado, entonces X es mX − T1. El rećıproco es cierto si mX

satisface la condición (B) de Maki.

Demostración. Sean x, y ∈ X tales que x 6= y, entonces {x} y {y} son con-
juntos mX -cerrados y por lo tanto X \ {y} y X \ {x} son conjuntos mX -
abiertos que contienen a x e y respectivamente y se cumple que y /∈ X \ {y}
y x /∈ X \ {x}, de donde se concluye que X es mX − T1.

Rećıprocamente, supongamos que X es mX − T1 y que mX satisface la
condición (B) de Maki. Sea x ∈ X, entonces para cada y ∈ X con x 6=
y existen conjuntos U, V ∈ mX que contienen a x e y respectivamente y
satisfacen que x /∈ V y y /∈ U , es decir, {x} ∩ V = ∅. Por lo que y /∈ mX −
cl({x}). Por lo tanto, mX − cl({x}) = {x} y como mX satisface la condición
(B) de Maki, entonces {x} es mX -cerrado.
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Observe que la condición (B) de Maki es suficiente para caracterizar los
m-espacios que son mX−T1. El siguiente ejemplo nos muestra que el rećıproco
del teorema anterior, en general no es cierto si no se le exige la condición (B)
de Maki a la mX estructura.

Ejemplo 4. Consideremos R con la siguiente mR estructura

mR = {∅,R} ∪ {{x} : x ∈ R} .

R es mR − T1 pues para x 6= y, {x}, {y} son mR-abiertos que no contienen a
y y x respectivamente. Sin embargo {x} no es mR-cerrado para ningún x ∈ R
.

4 Conjuntos mX-g-Cerrados y mX − T 1
2

En esta sección, utilizando la noción de mX estructura, se generalizan los
conceptos de conjunto g-cerrado [5], α-g-cerrado [12],α-sg-cerrado [12], (α, β)-
sg-cerrado [11] y de espacios T 1

2 [5], α − T 1
2 [12], α − semi − T 1

2 [12], y
(α, β)− semi− T 1

2 [11].

Definición 4.1. Sea (X, mX) un m-espacio, A un subconjunto de X, se dice
que A es un conjunto mX -cerrado generalizado, abreviado mX -g-cerrado, si
mX − cl(A) ⊂ U siempre que A ⊂ U y U ∈ mX .

Si (X, τ) es un espacio topológico y α y β son operadores asociados a la
topoloǵıa, entonces esta definición coincide con los conceptos de conjuntos g-
cerrados [5], α-g-cerrado[12], (α, β)-sg-cerrado[11], cuando la mX estructura
es la colección τ ,τα, (α, β)−SO(X) respectivamente. Además si mX satisface
la condición (B) de Maki, entonces este concepto coincide con la noción de
conjunto α-sg-cerrado [12], cuando la mX estructura es la colección α−SO(X).

Teorema 4.1. Sea (X, mX) un m-espacio, todo conjunto mX-cerrado es mX-
g-cerrado.

Los siguientes ejemplos nos muestran la existencia de conjuntos en un
m-espacios que son mX -g-cerrado que no son mX -cerrado.

Ejemplo 5. Consideremos R con la siguiente mR estructura

mR = {∅,R} ∪ {{x} : x ∈ R} .

El conjunto Q de los números racionales es mR-g-cerrado pues el único mR-
abierto que lo contiene es R; pero no es mR-cerrado.
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Ejemplo 6. Consideremos R con la siguiente mR estructura

mR = {∅,R} ∪ {[x,∞) : x ∈ R} .

el conjunto Q de los números racionales es un conjunto mR-g-cerrado pues el
único mR-abierto que lo contiene es R; pero no es mR-cerrado.

Definición 4.2. Sea (X, mX) un m-espacio, se dice que X es mX − T 1
2 , si

todo conjunto mX -g-cerrado es mX -cerrado.

Es de observar que la condición (B) de Maki no necesariamente la satisfa-
cen los m-espacios que son mX −T0 o mX −T1 o mX −T2, sin embargo existe
una estrecha relación entre los m-espacios que son mX − T 1

2 y los m-espacios
que satisfacen la condición (B) de Maki, como se observa en el siguiente teo-
rema.

Teorema 4.2. Sea (X, mX) un m-espacio, si X es mX − T 1
2 entonces mX

satisface la condición (B) de Maki.

Demostración. Supongamos que mX no satisface la condición (B) de Ma-
ki, entonces existe una colección {Uα}α∈J de conjuntos mX abiertos tal que
∪α∈JUα /∈ mX , luego F = X\∪α∈JUα no es un conjunto mX cerrado. Veamos
que F es un conjunto mX -g-cerrado.

En efecto, sea V ∈ mX tal que F ⊂ V , entonces

mX − cl(F ) = mX − cl(X \ ∪α∈JUα)
= mX − cl(∩α∈J(X \ Uα))
⊆ ∩α∈JmX − cl(X \ Uα)
= ∩α∈J (X \ Uα)
= X \ ∪α∈JUα = F ⊂ V

De modo que F es un conjunto mX -g-cerrado que no es mX -cerrado y por
tanto X no es mX − T 1

2 .

Teorema 4.3. Sea (X, mX) un m espacio y A un subconjunto de X. Si A es
mX-g-cerrado entonces mX−cl(A)\A no contiene subconjuntos mX-cerrados
no vaćıos. El rećıproco es cierto si mX satisface la condición (B) de Maki.

Demostración. Supongamos que A es un conjunto mX -g-cerrado y sea K un
subconjunto mX -cerrado de mX − cl(A) \ A, entonces X \K es un conjunto
mX -abierto que contiene a A y por tanto mX − cl(A) ⊂ X \K, de modo que
K ⊂ (X \mX − cl(A)) ∩ (mX − cl(A)), de donde se concluye que K = ∅
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Rećıprocamente, supongamos que mX−cl(A)\A no contiene subconjuntos
mX -cerrados no vaćıos y que mX satisface la condición (B) de Maki. Sea
U ∈ mX tal que A ⊂ U , entonces mX − cl(A) ∩ (X \ U) es un conjunto
mX -cerrado y

mX − cl(A) ∩ (X \ U) ⊂ mX − cl(A) ∩ (X \A) = mX − cl(A) \A

por tanto mX − cl(A) ∩ (X \ U) = ∅, es decir mX − cl(A) ⊂ U de donde se
concluye que A es mX -g-cerrado.

El siguiente teorema caracteriza los m-espacios mX − T 1
2 .

Teorema 4.4. Sea (X,mX) un m-espacio, X es mX − T 1
2 śı y sólo si las

siguientes se satisfacen:

1. Para todo x ∈ X se tiene que {x} es mX-abierto o mX-cerrado.

2. La mX estructura satisface la condición (B) de Maki.

Demostración. Sea x ∈ X y supongamos que {x} no es mX -cerrado, entonces
X \ {x} no es mX -abierto, de modo que el único mX -abierto que contiene a
X \{x} es X, por lo que X \{x} es trivialmente mX−g-cerrado, por hipótesis
X es mX − T1/2, entonces X \ {x} es mX -cerrado y por tanto {x} es mX -
abierto. Por Teorema 4.2 se concluye que mX satisface la condición (B) de
Maki.

Rećıprocamente, sea A un conjunto mX -g-cerrado y x ∈ mX − cl(A),
entonces por hipótesis puede ocurrir

1. {x} sea mX -abierto, entonces {x} ∩ A 6= ∅ y por tanto x ∈ A; es decir,
mX − cl(A) ⊂ A.

2. {x} se mX -cerrado, como A es mX -g-cerrado, entonces mX − cl(A) \A
no contiene conjuntos mX -cerrados no vaćıos, entonces x ∈ A; es decir,
mX − cl(A) ⊂ A.

En cualquier caso mX − cl(A) = A; como mX satisface la condición (B) de
Maki, entonces A es mX -cerrado.

Existen m-espacios en los cuales los conjuntos unitarios son mX -abiertos
o mX -cerrados y sin embargo el m-espacios X no es mX − T 1

2 , tal y como se
muestra en el siguiente ejemplo.
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Ejemplo 7. Considere X = {a, b, c, d} con la siguiente mX estructura,

mX = {∅, X, {a}, {b}, {a, b, d}, {a, b, c}}
Observe que los conjuntos unitarios son mX -abiertos o mX cerrados y sin
embargo X no es mX − T 1

2 . En efecto, {c, d} es un conjunto mX -g-cerrado
pues el único mX -abierto que lo contiene es X, y {c, d} no es un conjunto
mX -cerrado.

Los siguientes teoremas muestran la relación existente entre los m-espacios
mX − T0, mX − T1 y mX − T 1

2 .

Teorema 4.5. Sea (X, mX) un m-espacio, si X es mX − T1/2 entonces X
es mX − T0.

Demostración. Sean x, y ∈ X con x 6= y, entonces {x} es mX -abierto o mX -
cerrado.

Si {x} es mX -abierto entonces para V = {x} se tiene que x ∈ V y y /∈ V .
Si {x} es mX -cerrado, entonces V = X \ {x} es mX -abierto y x /∈ V y

y ∈ V . Por tanto X es mX − T0.

A continuación se exhibe un m-espacio que es mX − T0 pero que no es
mX − T 1

2 .

Ejemplo 8. Consideremos R con la siguiente mR estructura

mR = {∅,R} ∪ {[x,∞) : x ∈ R} .

R es mR − T0; sin embargo no es mR − T1/2.

Teorema 4.6. Sea (X,mX) un m-espacio, si mX satisface la condición (B)
de Maki y X es mX − T1, entonces X es mX − T1/2.

Demostración. Si X es mX−T1 y satisface la condición (B) de Maki, entonces
para todo x ∈ X se tiene que {x} son mX -cerrados y por tanto X es mX −
T1/2.

El siguiente ejemplo nos muestra un m-espacio que es mX −T1/2 pero que
no es mX − T1.

Ejemplo 9. Consideremos R con la siguiente mR estructura

mR = {∅,R, {a}} ∪ {R \ {x} : x 6= a} ,

donde a es un número real fijo. mR satisface la condición (B) de Maki y los
unitarios son conjuntos mR-abiertos o mR-cerrado. Por tanto R es mR−T1/2;
pero no es mR − T1 porque {a} no es mR-cerrado.
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Es de observar que existen m-espacios que son m − T1 pero que no son
m− T1/2. Para ello es suficiente encontrar un m-espacio que sea m− T1 pero
que no satisfaga la condición (B) de Maki

Ejemplo 10. Consideremos R con la siguiente mR estructura

mR = {∅,R} ∪ {{x} : x ∈ R} .

R es mR − T1; pero no es mR − T1/2. En efecto, Q es mR-g-cerrado pues el
único mR-abierto que lo contiene es R; pero no es mR-cerrado.
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Divulgaciones Matemáticas Vol. 15 No. 1(2007), pp. 47–58



58 M. Salas Brown, C. Carpintero, E. Rosas

[10] Popa, V. and Noiri, T. (2005), A unified theory for strong θ-continuity
for functions. Acta Math. Hungar. 40. 167-186.

[11] Rosas, E. Carpintero, C. y Sanabria, J. (2005). (α, β)-semi open sets
and some new generalizad separation axioms. Scientiae Mathematicae
Japonicae. 62, N 2.

[12] Rosas, E. Vielma, J. Carpintero, C. y Salas, M. (2000) Espacios α-semi-Ti
para i= 0,1/2, 1, 2. Pro-Mathematica. N 27, 37- 48.

[13] Rosas, E. Vielma, J. Carpintero, C. y Salas, M. (2005) (α, β)-sg-Ti spaces
for i: 1,2,3,4. Saber. 17, N 1.
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1. Introduction

Császár introduce in [6],[7],[8] and [9] the concept of generalized topology
and associated notions. Later, he introduces the notion of generalized topol-
ogy on a Cartesian product of sets and obtained several properties of it [9]).
Carpintero, Rosas and Sanabria introduced ([4]) a new class of associated op-
erators on the product topology in which each factor of the product space has
an associated operator to the respective topology. In this work, we charac-
terize the finitely inadmissible collections of subsets in the Cartesian product.
Also, we study the Cartesian product of γ-compact and the Cartesian prod-
uct of γ-semi compact spaces according to [9] and [4]. As a consequence, we
obtain a general framework which allows us to derive in a unified way many
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results about of generalized compactness in the Cartesian product of general-
ized topologies.

2. Preliminary

In this section, we recall some concepts and basic results defined by Császár
in [6],[7],[8] and [9].

Let X be a nonempty set and we denote by exp X its power set. A collection
μ ⊆ expX of subsets of X is said to be a generalized topology on X (briefly a
GT on X) if ∅ ∈ μ and an arbitrary union of elements of μ belongs to μ (In
general X /∈ μ. If X ∈ μ, μ is said to be a strong GT on X). The elements of
μ are said to be μ-pen set, their complements μ-closed sets .

Let B ⊆ expX satisfy ∅ ∈ B. Then all unions of some elements of B
constitute a GT μ(B), and B is said to be a base for μ(B).

Given a GT μ on X, Császár ([6], [7]) define mappings iμ, cμ : exp(X) →
exp(X) as follows:

iμA =
⋃

{B ∈ μ : B ⊆ A},

cμA =
⋂

{C : X − C ∈ μ, C ⊇ A}.

Observe that iμA is the largest μ-open subset of A, and cμA is the smallest
μ-closed subset of X containing A. In the following lemmas several properties
of iμ, cμ : exp(X) → exp(X) are considered (see [6, Lemmas 1.1, 1.4]).

Lemma 2.1. The operation iμ : exp(X) → exp(X) fulfils:

(i) A ⊆ B ⊆ X implies iμA ⊆ iμB;
(ii) iμA ⊆ A;
(iii) iμiμA = iμA.

Lemma 2.2. For cμ : exp(X) → exp(X), we have:

(i) A ⊆ B ⊆ X implies cμA ⊆ cμB;
(ii) cμA ⊆ A;
(iii) cμcμA = cμA.

Also, we have the followings characterizations.

Lemma 2.3. Let μ be a GT on a set X. Then:

(i) x ∈ iμA if and only if there exists M ∈ μ such that x ∈ M ⊆ A;
(ii) x ∈ cμA if and only if x ∈ M ∈ μ implies M ∩ A �= ∅
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In [7], Császár considered several collections of expX for a given GT μ on
X.

σ(μ) = {A ∈ expX : A ⊆ cμiμA},(1)

π(μ) = {A ∈ expX : A ⊆ iμcμA},(2)

α(μ) = {A ∈ expX : A ⊆ iμcμiμA},(3)

β(μ) = {A ∈ expX : A ⊆ cμiμcμA},(4)

ζ(μ) = {A ∈ expX : A ⊆ cμiμA ∪ iμcμA}.(5)

When μ is a topology on X, the elements of σ(μ), (respectively π(μ), α(μ),
β(μ), ζ(μ)) are said to be semi-open, (respectively preopen, β-open, b-open).

According Császár ([9]), if K �= ∅ is an index set, Xk �= ∅ for k ∈ K, and
X = Πk∈KXk the Cartesian product of the set Xk. Suppose that, for k ∈ K,
μk is a given GT on Xk. Let us consider all sets of the form Πk∈KMk where
Mk ∈ μk and, with the exception of a finite number of indices k, Mk = Mμk

.
We denote by B the collection of all these sets, and we define a GT μ = μ(B)
having B for base. We call μ the product of the GT’s μk and denote it by
Pk∈Kμk.

Remark 2.4. Let pk be the kth projection pk : X → Xk. For a given k and
Mk ∈ μk, we denote < Mk >= p−1

k (Mk); this is the ”slab” in X = Πk∈KXk

where each factor is Xk except the kth, which is Mk. Similarly, for finitely
many indices k1, ... kn in K and sets Mk1 ∈ μk1, ... Mkn ∈ μkn, the subset

< Mk1 > ∩ ...∩ < Mkn >= p−1
k1

(Mk1) ∩ ... ∩ p−1
kn

(Mkn) =

n
⋂

i=1

p−1
ki

(Mki
),

is denoted by < Mk1 ... Mkn > (see [11]). So, all unions of subsets of the
form < Mk1 ... Mkn > above defined constitute B for μ = Pk∈Kμk. Moreover,
if x ∈ M ∈ Pk∈Kμk there exists a subset < Mk1 ... Mkn >, such that x ∈<
Mk1 ... Mkn >⊆ M . Equivalently, if M ∈ Pk∈Kμk then M =

⋃

i∈I Gi (I being
a non empty set of indices), where Gi =

⋂

r∈J(i) p−1
r (M i

r), J(i) being a finite

subset of K for all i ∈ I, and M i
r being a γr-open set in the rth factor Xr, for

any r ∈ J(i) and i ∈ I.

We shall refer to [9] for more details and results concerning the product of
generalized topologies.

3. γ-open and γ-semi open sets in GT’s

In this section, we consider the notion of operator (or operation) on a set, and
the notions of γ-open and γ-sets in generalized topology. Also, we introduce a
new class of operation associated with the product of GT’s, in order to obtain
extension of the results given by Carpintero, Rosas and Sanabria (see [5]) in
the framework of GT’s.
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Let X be a nonempty set, and γ : exp X → exp X a mapping. We call
γ : exp X → exp X an operation on X ([5],[9]) if it is monotone (i.e A ⊆ B
implies γ(A) ⊆ γ(B)). If both γ and γ′ are operations, then by composition
we can obtain the operation γ ◦ γ′ (or simply γγ′ instead γ ◦ γ′).

Given a GT μ on a set X, we can obtain important special cases of op-
erations when γ is taken as follows: γ = cμ, γ = iμ, and its compositions
γ = cμiμ, iμcμ, iμcμiμ, cμiμcμ.

Considering an operation γ on the set, Császár [6], [8] introduced the notion
of γ-open sets. A subset A ⊆ X is said to be γ-open set, if A ⊆ γ(A). A
large literature is devoted to γ-open sets if μ is a GT on X and γ is taking
as cμiμ, (respectively iμcμ,iμcμiμ,cμiμcμ or cμiμ(A) ∪ iμcμ(A)), the collection of
the corresponding γ-open sets is σ(μ), (respectively π(μ), α(μ), β(μ), ζ(μ)).

The following lemma shows the behavior of γ-open sets under the union of
sets.

Lemma 3.1. [6]Let X be a nonempty set and μ be a GT on X. If γ : expX →
exp X is an operation and {Ai : i ∈ I} is a collection of γ-open sets in X,

then the union
⋃

i∈I

Ai is a γ-open set in X.

In a natural way, we can introduce the γ-semi open sets.

Definition 3.2. Let X be a nonempty set, μ be a GT on X, and γ : expX →
exp X be an operation. A subset A ⊆ X is said to be γ-semi open set, if
M ⊆ A ⊆ γ(A), for some M ∈ μ.

Now, we introduce the following generalization of the notion of associated
operator to a topology in the GT’s.

Definition 3.3. Let X be a nonempty set and μ be a GT on X. An operation
γ : expX → exp X is said to be associated to μ if M ⊆ γ(M), for all M ∈ μ.

Observe that for an operation γ : expX → exp X, each γ-semi open set is a
γ-open set. In fact, A γ-semi open implies that, there exists an μ-open set M
such that M ⊆ A ⊆ γ(M). Since γ is monotone, A ⊆ γ(M) ⊆ γ(A). In gen-
eral,
γ-open does not implies that γ-semi open. However, we have the following
equivalence.

The following example show that γ-open set does not γ-semi open set.

Example 3.4. Let {a, b, c, d}. Define a GT as follows μ = {∅, {a}, {c},
{a, b}, {a, c}, {a, b, c}}. Let γ defined as γ(M) = cμM . Then, we have {b, c} is
γ-
open set but not γ-semi open set.
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Theorem 3.5. Let X be a nonempty set, μ be a GT on X and γ : exp X →
exp X be an operation. Then, A ⊆ X is an γ-semi open set if and only if A is
an γ′-open set, where γ′ := γiμ.

Proof. Necessity. Suppose that A is an γ-semi open set. Then, we have M ⊆
A ⊆ γ(M) such that M ∈ μ. Since γ is monotone, we obtain A ⊆ γ((iμ(A)).
Thus, A is an γ′ = γiμ-open set.

Sufficiency. This is immediate consequence of Definition 3.2, since iμ(A)) is
μ-
open set.

From Theorem 3.5 and Lemma 3.1, we have Lemma 3.6 as follows:

Lemma 3.6. Let X be a nonempty set and let μ a GT on X. If γ : expX →
exp X be an operation and {Ai : i ∈ I} is a collection of γ-semi open sets in

X, then the union
⋃

i∈I

Ai is a γ-semi open set in X.

Remark 3.7. By the Lemma 3.1 the collection of γ-open sets is an GT on X.
Similarly, by the Lemma 3.5, the collection of γ-semi open sets is an GT on
X.

We now define a class of operations on the product of generalized topologies.

Definition 3.8. Let K �= ∅ be an index set. Suppose that, for each k ∈ K μk

are given a GT on Xk �= ∅ and an operation γk : exp Xk → expXk on Xk. An
operation γ : exp X → expX on X =

∏

k∈K Xk, is said to be compatible with
{γk}k∈K, if

γ(< Mk1 ... Mkn >) =< γk1(Mk1) ... γkn(Mkn) >,

for each member < Mk1 ... Mkn > in the base of μ = Pk∈Kμk.

Let K �= ∅ be an index set. Suppose that μk is given a GT on Xk �= ∅,
for each k ∈ K and considering μ = Pk∈Kμk on X =

∏

k∈K Xk. Let us write
i = iμ, c = cμ, ik = iμk

and ck = cμk
.

In the following example, we shows important cases of operations on the pro-
duct compatible with the operations on its factors.

Example 3.9. Let be

γk = ck (resp., ik, ckik, ikck, ikckik, ckikck).

for each k ∈ K. Then, acoording to Propositions 2.2 and 2.3 in [9]

γ = c (resp., i, ci, ic, ici, cic),

is in each case an operation on X compatible with the γ
′
ks.
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By means of class of operations above defined, we can obtain important
relationships between the structure of the γ-semi open (resp,. γ-open) sets in
the product and the structure of the γk-semi open (resp,. γk-open) sets in each
of its factors Xk.

Lemma 3.10. Let K �= ∅ be an index set. Suppose that, for each k ∈ K, a GT
μk on Xk �= ∅ and an operation γk : expXk → exp Xk on Xk, associated to μk,
are given. Suppose that γ : exp X → exp X is an operation on X =

∏

k∈K Xk,
associated to μ = Pk∈Kμk and compatible with {γk}k∈K, such that γ(∅) = ∅. If
∅ �=

∏

k∈K Ak, Ak ⊆ Xk, is a γ-semi open set in X, then Ak is γk-semi open
set in Xk for each k ∈ K.

Proof. Suppose that ∅ �=
∏

k∈K Ak is a γ-semi open set in X. Then there
exists an μ-open set M ⊆ X such that M ⊆

∏

k∈K Ak ⊆ γ(M). It is clear
that M �= ∅ because if M = ∅. Then ∅ �=

∏

k∈K Ak ⊆ γ(∅) = ∅, this is
impossible by the hypothesis. Let pk : X → Xk be the kth projection. Then
pk(M) ⊆ pk(

∏

k∈K Ak) = Ak. Hence pk(M) ⊆ Ak, for each k ∈ K. On the
other hand, for all k ∈ K we have

M ⊆
∏

k∈K

pk(M) ⊆< pk(M) > .

By hypothesis γ is monotone and compatible with {γk}k∈K . Since pk : X → Xk

is (μ, μk)-open (see [9, Proposition 2.4]), pk(M) ∈ μk for all k ∈ K, so we obtain
∏

k∈K

Ak ⊆ γ(M) ⊆ γ(< pk(M) >) =< γk(pk(M)) > .

This implies that Ak ⊆ γk(pk(M)) for each k ∈ K.

By the above argument, we see that there exists an γk-open set pk(M) ⊆ Xk

which satisfies
pk(M) ⊆ Ak ⊆ γk(pk(M)),

from which we conclude that each Ak is an γk-semi open set in Xk.

Corollary 3.11. Under the hypothesis of Lemma 3.10, if the product
∏

k∈K Ak,
is a nonempty proper subset and γ-semi open set of X, then there exists a finite
subset {k1, k2, ..., kn} ⊆ K such that the γk-semi open sets Ak are distint from
Xk, for each k ∈ {k1, k2, ..., kn}.
Proof. By hypothesis there exists an μ-open set ∅ �= M ⊆ X such that

M ⊆
∏

k∈K

Ak ⊆ γ(M).

Consequently there exists a point x ∈ M and a basic set < Mk1 ... Mkn > in
μ = Pk∈Kμk, such that

x ∈< Mk1 ... Mkn >⊆ M ⊆
∏

k∈K

Ak ⊆ γ(M).
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It follows that x ∈< Mk1 ... Mkn >⊆
∏

k∈K Ak. But this implies that Xk = Ak,
for each k /∈ {k1, k2, ..., kn}.
Theorem 3.12. Let K �= ∅ be an index set. Suppose that a GT μk on Xk �= ∅
for each k ∈ K and an operation γk : expXk → exp Xk on Xk, associated to μk,
are given. Suppose that γ : exp X → exp X is an operation on X =

∏

k∈K Xk,
associated to μ = Pk∈Kμk and compatible with {γk}k∈K, such that γ(∅) = ∅.
Then

< Ak1 , Ak2 , ... Akn > is γ-semi open ⇔ Aki
is γki

-semi open, i = 1, ..., n.

Proof. (Sufficience). It follows from Lemma 3.10.

(Necessity)Let Aki
, Aki

�= Xki
, be a γki

-semi open set in Xki
for each i ∈

{1, 2, ..., n}. By hypothesis, there exists μki
-open sets Mki

⊆ Xki
such that

Mki
⊆ Aki

⊆ γki
(Mki

), for i = 1, ..., n. Note that from Mki
⊆ Aki

�= Xki
, we

obtain that Mki
�= Xki

for i ∈ {1, 2, ..., n}. Therefore

< Mk1, Mk2 , ... Mkn > ⊆ < Ak1 , Ak2 , ... Akn >

⊆ < μk1(Mk1), μk2(Mk2), ... μkn(Mkn) >,

from which we obtain that

< Mk1 , Mk2 , ... Mkn >⊆< Ak1 , Ak2 , ... Akn >⊆ γ(< Mk1 , Mk2 , ... Mkn >).

Thus < Ak1 , Ak2, ... Akn > is μ-semi open set.

Remark 3.13. In the Theorem 3.12, we obtain a generalization of the results
proved by Carpintero, Rosas and Sanabria (Lemmas 2.1, 2.2 and Theorem 2.3
in
[4]). Moreover, the above result implies Proposition 2.7 in [9], proved by
Császár under the assumption that every μk is strong. Obviously, in the proof
of the Theorem 3.12 this hypothesis is unnecessary.

Theorem 3.14. Let K �= ∅ be an index set. Suppose that, for each k ∈ K, a
GT μk on Xk �= ∅ and an operation γk : expXk → expXk on Xk, associated
to μk, are given. Suppose that γ : exp X → exp X is an operation on X =
∏

k∈K Xk, associated to μ = Pk∈Kμk and compatible with {γk}k∈K such that
γ(∅) = ∅, then for all k ∈ K we have:

(i) p−1
k (Mk) is γ-semi open in X, if Mk is γk-semi open in Xk;

(ii) pk(V ) is γk-semi open in Xk, if V is γ-semi open in X.

Proof.
(i) Follows from the Theorem 3.12.

(ii) Suppose that V is a γ-semi open set in
∏

k∈K Xi. Then there exists an
γ-open set M ⊆

∏

k∈K Xk such that M ⊆ V ⊆ γ(M). If M = ∅, then

∅ = pk(∅) = pk(M) ⊆ pk(V ) ⊆ pk(γ(M)) = pk(γ(∅)) = pk(∅) = ∅.
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So pk(V ) = ∅, and trivially pk(V ) is γk-semi open in Xk. On the other hand, if
M �= ∅, then M =

⋃

i∈I Gi (I a non empty set of indices) since M is a γ-open
set in

∏

k∈K Xk, , where Gi =
⋂

r∈J(i) p−1
r (M i

r), being J(i) a finite subset of K

for all i ∈ I, and M i
r be a γr-open set in the rth factor Xr, for any r ∈ J(i)

and i ∈ I. Now, for each i ∈ I, we have that either
(a) exists i0 ∈ I such that k /∈ J(i0), or (b) k ∈ J(i) for all i ∈ I.
In case (a), we observe that Gi0 ⊆

⋃

i∈I Gi = M , then pk(Gi0) ⊆ pk(M).
But, pk(Gi0) = pk(

⋂

r∈J(i0) p−1
r (M i0

r )) = Xk, because i �= r for all r ∈ J(i0).

Thus pk(Gi0) = Xk, from this and by inclusion M ⊆ V , it then follows that

Xk = pk(γ(Gi0)) ⊆ pk(
⋃

i∈i

Gi) = pk(M) ⊆ pk(V ) ⊆ Xk,

hence pk(V ) = Xk. Therefore pk(V ) is γk-semi open in Xk. In case (b), observe
that

pk(Gi) = pk(
⋂

r∈J(i)

p−1
r (Mk

r )) = M i
r , ∀i ∈ I,

since k ∈ J(i), for all i ∈ I. Then,

pk(M) = pk(
⋃

i∈I

Gi) =
⋃

i∈I

pk(Gi) =
⋃

i∈I

M i
r.

Thus,
⋃

i∈I M i
r = pk(M) ⊆ pk(V ). Observe that

M ⊆
∏

k∈K

pk(M) ⊆< pk(M) >,

M is a γ-open set, pk is a (μ, μk)-open (see [9, Proposition 2.4]) and γ is a
monotone associated operation compatible with {γk}, we obtain that

V ⊆ γ(M) ⊆< γk(pk(M)) >=< γk(pk(
⋃

i∈I

U i
r))) > .

In consequence,

pk(V ) ⊆ pk(< γk(pk(
⋃

i∈I

M i
r))) >) = γk(pk(

⋃

i∈I

M i
r))).

Thus,
⋃

i∈I U i
r ⊆ pk(V ) ⊆ γk(

⋃

i∈I M i
r), hence pk(V ) is a γk-semi open set in

Xk.

Remark 3.15. In the Theorem 3.13, we obtain extensions of Proposition 2.4 in
[9] and Proposition 2.7 in [9], which are particular cases of Theorem 3.12, by
taking γ(A) = A, for all A ⊆ X, and γk(Ak) for Ak ⊆ Xk.
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4. Inadmissible Families and Products

In this section we summarized some terminology and results concerning
finitely inadmissible families. Also we give characterizations for those finitely
inadmissible families in a Cartesian product of sets.

Recall that a collection A of subsets of a set X �= ∅, is said to be an
inadmissible (or inadequate) [23] if A fails to covers X. A is said to be finitely
inadmissible (or finitely inadequate) family, briefly f.i, if no finite subcollection
of A covers X.

The property of being finitely inadmissible satisfies the following conditions.

Lemma 4.1. [15] Let X be a nonempty set and let A be a nonempty collection
of subsets of X. The following assertions hold:

(i) If A is f.i, then A has finite character;
(ii) If A is f.i and A ⊆ X, then either A ∪ {A} or A ∪ {X \ A} is f.i.

Using the Tukey’s Lemma, or equivalently, the axiom of choice, we obtain
the following result.

Lemma 4.2. Let A be a f.i family of subsets of X. Then:

(i) There exists a f.i family A+ of subsets of X such that, A ⊆ A+ and A+

is maximal with respect to the partial order

A ≺ A′ if and only if A ⊆ A′,

defined on the class of all f.i families of subsets of X containing A.
(ii) If A /∈ A+ and A ⊆ A′, then A′ /∈ A+

Proof.
(i) It is a direct consequence of Tukey’s Lemma, or the axiom of choice (see

[4],[15]).

(ii) If A /∈ A+, from the maximality of A+, it follows that A+∪{A} is not f.i.
By the Lemma 4.1, either A+ ∪{A} or A+ ∪{X \A} is f.i. If A+ ∪{A} is not
f.i, then A+∪{X \A} is f.i. Since A ⊆ A′, then X = A∪(X \A) ⊆ A′∪(X \A).
We have X = A′ ∪ (X \A). In consequence, if A′ ∈ A+ then A+ ∪ {X \A} is
not f.i, but it is impossible. Thus A′ /∈ A+.

Applying this lemma, we obtain the following result.

Lemma 4.3. Let X be a nonempty set. If A′ and A are families of subsets of
X such that, A′ ⊆ A and each member of A is a superset of some member of
A′. Then, A contains a f.i subfamily if and only if A′ contains a f.i subfamily

Proof.
(Sufficiency). Suppose that A contains a f.i subfamily B. By hypothesis,

for each B ∈ B, B ∈ A and there exists A′ ∈ A′ such that A′ ⊆ B. If
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B+ is the maximal f.i family corresponding to the collection B, then we have
A′ ⊆ B ∈ B ⊆ B+ from the Lemma 4.1. Thus, A′ ⊆ B and B ∈ B+. By part
(ii) of the Lemma 3.1, necessarily A′ ∈ B+. Hence there exists A′ ∈ B+ ∩ A′,
for all B ∈ B. On the other hand, B+ ∩ A′ ⊆ B+ and B+ is f.i, then B+ ∩ A′

is f.i. Therefore B′ = B+ ∩ A′, thus B′ ⊆ A′ and B′ is f.i.

(Necessity). It is obvious since A′ ⊆ A.

Let K �= ∅ be an index set. Suppose that a nonempty collection Ak of
subsets of a set Xk for each k ∈ K is given. Now we consider the following
subcollections of Cartesian product

∏

k∈K Xk of the sets Xk.

i)
∨

k∈K Ak denotes the collection of all subset V ⊆
∏

k∈K Xk, such that

there exists k ∈ K and Uk ∈ Ak for which p−1
k (Uk) ⊆ V ,

ii)
∧

k∈K Ak denotes the collection of all subset of Cartesian product
∏

k∈K Xk,

whose members are union of sets of the form p−1
k (Uk), where Uk ∈ Ak and

k ∈ K.

Trivially
∧

k∈K Ak ⊆
∨

k∈K Ak, but not necessarily
∧

k∈K Ak =
∨

k∈K Ak.
For the collections above defined, using the Lemma 4.3, we obtain the following
result.

Lemma 4.4.
∨

k∈K Ak (resp.,
∧

k∈K Ak) contains a f.i subfamily if and only
if, for some k ∈ K, Ak contains a f.i subfamily.

Proof.
(Sufficiency) Suppose that

∨

k∈K Ak contains a f.i family and for each k ∈ K,
the collection Ak does not contain any f.i subfamily. By definition of

∨

k∈K Ak

and Lemma 4.3, there exists a subcollection C, whose members are of type
p−1

k (Uk), with Uk ∈ Ak and k ∈ K, such that C does not contain any finite
subcollection that covers

∏

k∈K Xk. For each k ∈ K, consider

Ck = {Uk : Uk ∈ Ak y p−1
k (Uk) ∈ C}.

Observe that Ck ⊆ Ak, and by hypothesis Ak does not contain any f.i subfamily,
so there exists a finite subcollection {Uk1, Uk2 , ..., Ukn} of Ck such that Xk =
⋃n

i=1 Uki
. Then,

∏

k∈K

Xk = p−1
k (Xk) = p−1

k (

n
⋃

i=1

Uki
) =

n
⋃

i=1

p−1
k (Uik).

Hence
∏

k∈K Xk =
⋃n

i=1 p−1
k (Uki

), but it is impossible because p−1
k (Uki

) ∈ C,
for all i = 1, 2, ..., n and k ∈ K.

(Necessity) Suppose that any subfamily of
∨

k∈K Ak is not f.i. For each

k ∈ K and for all subcollection Bk ⊆ Ak, trivially, we have that {p−1
k (Uk) :

Uk ∈ Bk} is a subcollection of
∨

k∈K Ak. By hypothesis, there exists a finite
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subcollection {Bk1, Bk2 , ..., Bkn} ⊆ Bk, such that
∏

k∈K Xk =
⋃n

i=1 p−1
k (Bki

).
From this equality, since pk is onto, it follows that

Xk = pk(
∏

k∈K

Xk) = pk(
n

⋃

i=1

p−1
k (Bki

)) =
n

⋃

i=1

pk(p
−1
k (Bki

)) =
n

⋃

i=1

Bki
.

Thus Xk =
⋃n

i=1 Bki
, this implies that Bk is not f.i. Therefore Ak does not

contain any f.i subfamily.

In the case of
∧

k∈K Ak. Observe that
∧

k∈K Ak ⊆
∨

k∈K Ak, and by Lemma
4.3,

∧

k∈K Ak contains a f.i subcollection if and only if
∨

k∈K Ak contains a
f.i subcollection. But, by the above proof we conclude that there exists an
collection Ak which contains a f.i subfamily.

In the next theorem, we get the following generalization of Lemma 4.4.

Theorem 4.5. If A ⊆ P (
∏

k∈K Xi) and Ak ⊆ P (Xk), for all k ∈ K, are
collections that satisfying the following conditions:

i) p−1
k (Uk) ∈ A, ∀U ∈ Ak, ∀k ∈ K,

ii) pk(V ) ∈ Ak, ∀V ∈ A, k ∈ K,
iii) A is stable for the union of sets.

Then, A contains a f.i subfamily if and only if Ak contains a f.i subcollection,
for some k ∈ K

Proof.
(Sufficiency) Suppose that A contains a f.i subfamily B. Then, for any

finite subcollection {B1, B2, ..., Bn} ⊆ B,
∏

k∈K Xk �=
⋃n

i=1 Bi. Thus, there
exists an element x = (xk)k∈K ∈

∏

k∈K Xk such that, x /∈
⋃n

i=1 Bi. From
this, it follows that for all element y = (yk)k∈K ∈

⋃n
i=1 Bi, x �= y. Hence,

there exists k0 ∈ K such that xk0 �= yk0 = pk0(y). Then xk0 �= pk0(y), for
all y ∈

⋃n
i=1 Bi, this implies that xk0 /∈ pk0(

⋃n
k=1 Bi) =

⋃n
i=1 pk0(Bi). In

consequence, Xk0 �=
⋃n

i=1 pk0(Bi), from which we conclude, by hypothesis ii),
that {pk0(B1), pk0(B2), ..., pk0(Bn)} ⊆ Ak0 is f.i.

(Necessity) Suppose that Ak, k ∈ K, contains a f.i subcollection. By Lemma
4.4, we have that

∧

k∈K Ak contains a f.i subcollection. From the hypothesis
i) and iii), it follows that

∧

k∈K Ak ⊆ B, so B contains a f.i subfamily.

Observe that if A contains a subcollection B, such that B is non-inadmissible
and B is f.i. Following the proof of previous theorem, it easy to see that for
some k0 ∈ K, the collection {pk0(B) : B ∈ B} ⊆ Ak0 is f.i. On the other hand
Xk0 =

⋃

B∈B pk0(B), because
∏

k∈K Xk =
⋃

B∈B B, so {pk0(B) : B ∈ B} ⊆ Ak0

is non-inadmissible and f.i. Conversely, if for some k ∈ K, Ak contains a
non-inadmissible and f.i subcollection Bk. From this, and by hypothesis i), A
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contains a f.i collection B = {p−1
k (B) : B ∈ Bk}. Moreover,

∏

k∈K

Xk = p−1
k (Xk) = p−1

k (
⋃

B∈Bk

B) =
⋃

B∈Bk

p−1
k (B),

then B = {p−1
k (B) : B ∈ Bk} is non-inadmissible. Thus we get the following

result.

Theorem 4.6. Under the hypothesis of Theorem 4.5, we have
A contains a non inadmissible and f.i subcollection if and only if Ak contains
a non inadmissible and f.i subcollection, for some k ∈ K.

Remark 4.7. In the above Theorem, if A is a GT on
∏

k∈K Xk, then the con-
dition, A is stable for the union of sets, is unnecessary.

5. Compactness in Generalized Spaces and some applications

In this section we introduce a new form of generalized compactness with
respect to a GT on a set. Hence, we obtain a general framework which allows
us to derive in a unified way many recent results, concerning the compactness in
a product of generalized topologies, product of γ-compact spaces and product
of γ-semi compact spaces.

Császár [8], was considered the following notion as an analogue of the con-
cept of compactness.

Definition 5.1. Let X be a nonempty set, and γ : exp X → expX be an
operation. X is said to be γ-compact space if each cover of X composed of
γ-open sets has a finite subcover.

In the following definition, we give another analogue notion of the concept
of compactness.

Definition 5.2. Let X be a nonempty set, μ be a GT on X, and γ : expX →
exp X an operation. X is said to be γ-semi compact space if each cover of X
composed of γ-semi open sets has a finite subcover.

We introduce in the following definition which is more general notion from
the two definitions above on compactness.

Definition 5.3. Let X be a nonempty set and μ be a GT on X. X is said to
be μ-compact if every f.i collection of μ-open subsets of X is inadmissible.

The following characterization constitute a generalized version of the Alexan-
der Lemma, for μ-compactness in the context of GT’s.

Theorem 5.4. Let X be a nonempty set, and μ = μ(B) a GT on X having
B for base. Then X is μ-compact if and only if every f.i collection of subsets
of B is inadmissible.



Inadmissible families and product of generalized topologies 3107

By Theorem 4.6, we obtain the following generalized version of the Tychonoff
Theorem for μ-compactness in the GT’s.

Theorem 5.5. Let K �= ∅ be an index set. Suppose that, for each k ∈ K, a
GT on Xk �= ∅ is given. Suppose that μ is a GT on X =

∏

k∈K Xk �= ∅, such
that

(i) p−1
k (Mk) ∈ μ, if Mk ∈ μk and k ∈ K;

(ii) pk(M) ∈ μk, if M ∈ μ and k ∈ K.

Then, X is μ-compact if and only if each Xk is μk-compact.

By Theorem 5.5 and Theorem 3.13, we have the following interesting corol-
lary

Corollary 5.6. Let K �= ∅ be an index set. Suppose that, for each k ∈ K, a
GT on Xk �= ∅ is given. Let μ = Pk∈Kμk be the product of the GT’s μk. Then,
X is μ-compact if and only if each Xk is μk-compact.

According to the Lemma 3.6, the collection of the γ-semi open sets is a GT
on a set X. Moreover, the Theorem 3.14, shows that collection of the γ-semi
open sets in a Cartesian product, satisfy the conditions (i) and (ii) in the
Theorem 5.5, if we consider in each of its factor the collection of the γk-semi
open sets. Thus, we have the next result.

Theorem 5.7. Let K �= ∅ be an index set. Suppose that, for each k ∈ K, a
GT on Xk �= ∅ and the operation γk : exp Xk → exp Xk on Xk associated to μk

are given. Suppose that γ : exp X → exp X is an operation on X =
∏

k∈K Xk,
associated to μ = Pk∈Kμk and compatible with {γk}k∈K, such that γ(∅) = ∅.
Then, X is γ-semi compact if and only if each Xk is γk-semi compact.

In the above theorem, if we choose the operations γ and γk in adequate form,
we obtain many different forms of generalized compactness. The following
special cases have been introduced in the literature (see [8],[9]). When γ is
taken as cμiμ, (respectively iμcμ,iμcμiμ,cμiμcμ), the corresponding notion of
γ-semi compactness is semi-compactness, (respectively strongly compactness,
α-compactness, β-compactness).

It is easy to see that if γ : exp X → exp X is an operation on X =
∏

k∈K Xk,
associated to μ = Pk∈Kμk and compatible with {γk}k∈K , such that γ(∅) = ∅.
Then γiμ : exp X → expX is an operation on X =

∏

k∈K Xk, associated to
μ = Pk∈Kμk and compatible with {γkik}k∈K, also γiμ(∅) = ∅. So, by using
Theorem 3.5, we have the following result.

Corollary 5.8.
(i) A nonempty product space is semi compact iff each factor space is semi

compact;
(ii) A nonempty product space is α-compact iff each factor space is α-compact.
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Ganster, Janković and Reilly obtain (see [14]) that a topological space (X, τ)
is semi-compact if and only if (X, τα) is hereditarly compact, using the notion
of hereditarly compact introduced by Stone (see [22]). By this result and the
previous Corollary, we obtain a corollary as follows.

Corollary 5.9. A nonempty product space is hereditarly compact if and only
if each factor space is hereditarly compact.

Remark 5.10. The notions of semi-compactness, α-compactness and heredi-
tarly compact have been studied by many mathematicians in topological spaces
(particular case of a GT). In the literature a few results about product of these
notions are known.
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[6] Á. Császár, Generalized open sets in generalized topologies, Acta Math.

Hungar.,106(2005),55-66.
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