

UNIVERSIDAD DE ORIENTE NÚCLEO BOLIVAR ESCUELA DE CIENCIAS DE LA SALUD "Dr. FRANCISCO BATTISTINI CASALTA" COMISIÓN DE TRABAJOS DE GRADO

ACTA

TG-2024-02-21

Los abajo	firmantes	, Profesores;	Prof. RC	DOLFO	DEVERA	Prof.	YTALIA	BLANCO y	Prof.	IXORA
REQUENA	, Reunidos	s en: Audet	orio de	Cantr	o clini	CO	Univar	setario		
de cli	nica	Origate								,

a la hora: 3 pm

Constituidos en Jurado para la evaluación del Trabajo de Grado, Titulado:

UTILIDAD DE UNA MODIFICACIÓN DE LA TÉCNICA DE WILLIS EN EL DIAGNÓSTICO DE HUEVOS DE GEOHELMINTOS

Del Bachiller GUERRERO GUERRERO KELIX NAZARET C.I.: 20100234, como requisito parcial para optar al Título de Médico cirujano en la Universidad de Oriente, acordamos declarar al trabajo:

VEREDICTO

REPROBADO	APROBADO	APROBADO MENCIÓN HONORIFICA	APROBADO MENCIÓN PUBLICACIÓN
-----------	----------	--------------------------------	------------------------------

En fe de lo cual, firmamos la presente Acta.

En Ciudad Bolívar, a los 08 días del mes de Octob (a de 20 24

Prof. RODOLFO DEVERA Miembro Tutor

Prof. YTALIA BLANCO

Miembro Principal

Prof. TXORA REQUENA Miembro Principal

Prof. IVÁN AMAYA RODRIGUE

1 8 El 3

DEL PUEBLO VENIMOS / HACIA EL PUEBLO VAMOS

DEL PUEBLO VENIMOS / HACIA EL PUEBLO VAMOS

Teléfono (0285) 6324976

Avenida José Méndez c/c Columbo Silva- Sector Barrio Ajuro- Edificio de Escuela Ciencias de la Salud- Planta Baja- Ciudad Bolívar- Edo, Bolívar- Veneza

UNIVERSIDAD DE ORIENTE NÚCLEO BOLIVAR ESCUELA DE CIENCIAS DE LA SALUD "Dr. FRANCISCO BATTISTINI CASALTA" COMISIÓN DE TRABAJOS DE GRADO

ACTA

TG-2024-02-21

Los abajo firmantes, Profesores: Prof. RODOLFO DEVERA Prof. YTALIA BLANCO y Prof. IXOF REQUENA, Reunidos en: Auditorio ola Cantro Clanco Universitario da Clanco Origana	Z.A
a la hora: 2 p ~ Constituidos en Jurado para la evaluación del Trabajo de Grado, Titulado:	٠

UTILIDAD DE UNA MODIFICACIÓN DE LA TÉCNICA DE WILLIS EN EL DIAGNÓSTICO DE HUEVOS DE GEOHELMINTOS

Del Bachiller **GUERRERO GARCIA MARÍA EUGENIA** C.I.: 23705185, como requisito parcial para optar al Título de **Médico cirujano** en la Universidad de Oriente, acordamos declarar al trabajo:

VEREDICTO

REPROBADO	APROBADO	APROBADO MENCIÓN HONORIFICA	APROBADO MENCIÓN PUBLICACIÓN
-----------	----------	--------------------------------	------------------------------

En fe de lo cual, firmamos la presente Acta.

En Ciudad Bolívar, a los 00 días del mes de Octub (c de 2.0 24

Prof. RODOLFO DEVERA Miembro Tutor

Prof. YTALIA BLANCO

Miembro Principal

Prof. IXORA REQUENA Miembro Principal

Prof. IVÁN AMAYA GODRIGUEZ Coordinador comisión Trabajos de Grado

DEL PUEBLO VENIMOS / HACIA EL PUEBLO VAMOS

Avenida José Méndez e/c Columbo Silva- Sector Barrio Ajuro- Edificio de Escuela Ciencias de la Salud- Planta Baja- Ciudad Bolívar- Edo. Bolívar- Venezuela

Teléfono (0285) 6324976

UNIVERSIDAD DE ORIENTE NÚCLEO BOLÍVAR

ESCUELA DE CIENCIAS DE LA SALUD

"Dr. Francisco Virgilio Battistini Casalta"

DEPARTAMENTO DE PARASITOLOGÍA Y MICROBIOLOGÍA

UTILIDAD DE UNA MODIFICACIÓN DE LA TÉCNICA DE WILLIS EN EL DIAGNÓSTICO DE HUEVOS DE GEOHELMINTOS

Tutor académico: Trabajo de Grado Presentado por:

Dr. Rodolfo Devera Br: Guerrero Guerrero Kelix Nazaret

C.I: 20.100.234

Br: Guerrero García María Eugenia

C.I: 23.705.185

Como requisito parcial para optar por el título de Médico cirujano

Ciudad Bolívar, octubre de 2024.

ÍNDICE

ÍNDICE	iv
AGRADECIMIENTOS	vi
DEDICATORIA	vii
RESUMEN	X
INTRODUCCIÓN	1
JUSTIFICACIÓN	7
OBJETIVOS	8
Objetivo General	8
Objetivos Específicos	8
METODOLOGÍA	9
Tipo de estudio	9
Área de estudio	9
Universo y muestra	10
Criterios de inclusión	10
Criterios de inclusión	11
Recolección de datos	11
Procesamiento de las muestras fecales	12
Análisis de datos	15
Consideraciones bioéticas	15
RESULTADOS	16
Tabla 1	17
Grafico 1	18
Tabla 2	19
Figura 1	20
Figura 2	21
DISCUSIÓN	22

CONCLUSIÓN	26
REFERENCIAS BIBLIOGRAFÍCAS	27
APÉNDICES	40
Apéndice A	41
ANEXOS	
Anexo 1	43

AGRADECIMIENTOS

Al Dr. Rodolfo Devera por su tutoría. Contar con sus conocimientos en este camino ha sido un verdadero privilegio por el cual estaremos siempre agradecidas.

Al Consejo Comunal "Los verdaderos revolucionarios por la patria de Moreno de Mendoza"

Al Consejo Comunal "Cuyuní"

A los docentes, personal técnico y estudiantes de la Universidad de Oriente, que participaron de la recolección y procesamiento de las muestras en los Barrios Moreno de Mendoza y Cuyuní.

Al Laboratorio de Diagnóstico Coproparasitológico del Dpto. de Parasitología y Microbiología de la Escuela de Ciencias de la Salud, Universidad de Oriente, Núcleo Bolívar.

Trabajo desarrollado por el Grupo de Parasitosis Intestinales del Dpto. de Parasitología y Microbiología de la Escuela de Ciencias de la Salud.

DEDICATORIA

A Dios y a la virgen del Carmen por darme la sabiduría y la fuerza para seguir adelante y supera cada obstáculo que se me presento durante mi carrera, y por permitirme cumplir la meta de ser médico cirujano profesión que ejerceré con humildad vocación y amor al prójimo.

A mis padres Ana Petra y Felix Guerrero por ser mi pilar y apoyo fundamental durante mi carrera por sus consejos por sus ánimos y por ser el bastón que me sostuvo para no rendirme y porque nunca dejaron de creer en mi. Por inculcarme valores y principios tan importantes como la humildad la responsabilidad el respeto y la honestidad que me han hecho la persona que hoy soy, darme la fuerza para no rendirme porque durante mi carrera fueron la base de que hoy pueda decir lo logre.

A mi hermano Darlin Rafael porque siempre estuvo presente apoyándome dándome ánimos y porque nunca dejo de creer en mi. a mis sobrinas maría jose y nazaret que no pude estar con ellas en sus etapas de crecimiento espero que esto las motive siempre a seguir adelante y nunca rendirse.

A mi tia Magaly mi inspiración a seguir sus pasos y por brindarme su apoyo incondicional, a mi madrina Ludy porque nunca dejo de creer en mi porque siempre me apoyo y me amino a no desmayar,

A mis tios y tías primos y primas materna y paternas porque siempre han estado para mi compartiendo cada uno de mis logros.

A mi novio Pedro Pimentel por su apoyo incondicional. Por su comprensión y regalarme sonrisas en medio de mis crisis de estrés.

A mis suegros Coro y Pedro porque han sido incondicionales por su apoyo y brindarme un hogar

A mis amigas Catherin y Ray por su apoyo incondicional.

A mis compañeros y amigos presentes y pasados que sin esperar nada a cambio compartieron sus conocimientos, alegrías y tristezas: Daniuska, Gricelys Luis Rivero, Marcos, Alexander.

A mi compañera de tesis María Guerrero por creer e ir conmigo en la realización de este trabajo de grado

A la Universidad de Oriente por ser mi casa de estudios.

Al Hospital Universitario Ruiz y Páez por abrir sus puertas y albergar a tantos médicos que han sido parte de mi formación.

Kelix Nazareth Guerrero

DEDICATORIA

A Dios y a la persona más fuerte y luchadora que conozco María Eugenia Guerrero García a mi ser interior que insistió, persistió y nunca desistió a pesar de los obstáculos las adversidades no se desvió del camino.

También a mis padres Julio Guerrero y Luisa García por apoyarme en todo momento creer en mi, por sus palabras de aliento para poder cumplir mis ideales.

A mi amada hija Jana Quintana por llegar y ser mi fuente de motivación más grande, para poder superarme cada día y así poder luchar para que la vida nos depare un futuro mejor y ser su ejemplo.

A mis hermanos Jhuliana y Julio Guerrero por siempre estar presentes acompañándome y por el apoyo moral, a lo largo de esta etapa de mi vida.

A mi cuñada María Calderon por a pesar de no saber nada de mi carrera me ayudaba a estudiar largas horas.

A mi pareja por el apoyo, por estar siempre presente por su comprensión y sacrificio para que lograra mis objetivos.

A mis compañeros y amigos presentes y pasados que sin esperar nada a cambio compartieron sus conocimientos, alegrías y tristezas, Veronica Jeffers, Alexander Gómez, mi compañera de tesis Kelix Guerrero y a todas aquellas personas que durante estos largos años estuvieron a mi lado apoyándome y lograron que este sueño se haga realidad. GRACIAS INFINITAS.

María Eugenia Guerrero

UTILIDAD DE UNA MODIFICACIÓN DE LA TÉCNICA DE WILLIS EN EL DIAGNÓSTICO DE HUEVOS DE GEOHELMINTOS Kelix Guerrero y María Guerrero. Rodolfo Devera. 2024

RESUMEN

Se realizó un estudio para determinar la utilidad de una modificación de la técnica de Willis en el diagnóstico de huevos de helmintos comparándola con la técnica de Willis tradicional. En julio de 2023 fueron evaluadas las heces de 136 habitantes del barrio Moreno de Mendoza y 100 del barrio Cuyuní de Ciudad Bolívar. Se obtuvo una prevalencia de helmintos intestinales de 5,9% (8,8% en Moreno de Mendoza y 2% en Cuyuní). El helminto de mayor prevalencia fue Ascaris lumbricoides con 11 casos (10 en Moreno de Mendoza y 1 en Cuyuní). De estas 14 muestras fecales positivas, 12 estaban en cantidad suficiente que permitió realizar las dos modalidades de la técnica de Willis (10 en Moreno de Mendoza y 2 en Cuyuní). De las 12 muestras positivas en Kato y sometidas a la técnica de Willis, 11 estaban positivas en la modalidad tradicional y 10 en la modalidad cubana, para una frecuencia de helmintos de 91,7% y 83,3%, respectivamente. De los 9 casos de A. lumbricoides en el Kato, Willis tradicional solo dejo de diagnosticar uno, mientras que la modificación cubana no diagnóstico dos casos. Respecto a Trichuris trichiura, en ambas modalidades de Willis se perdió un caso (no identificado). Finalmente, los 2 casos de ancylostomideos se identificaron en ambas modalidades. Respecto a la morfología de los huevos observados, de estos helmintos no hubo diferencia entre las dos modalidades, ya que la anatomía característica se mantuvo en ambos casos. En conclusión, la modificación cubana de la técnica de Willis es útil para el diagnóstico de huevos de helmintos, siendo sus resultados comparables a los obtenidos con la técnica de Willis tradicional, tanto de manera global como por taxones de helmintos.

Palabras clave: geohelmintos, diagnóstico, solución salina saturada, Ascaris lumbricoides.

INTRODUCCIÓN

Los helmintos son invertebrados eucarióticos de algunos han evolucionado hacia el parasitismo intestinal causando algunas de las parásitos más prevalentes en el mundo. Los gusanos parasitarios comprenden dos fila principales: a) platelmintos, a su vez subdivididos en cestodos (Tenias) y trematodos (Fasciola, Esquistosoma y Paragonimus), y b) nematodos o nematelmintos (Rey, 2001; Prieto-Pérez et al., 2016).

Dentro de los nematodos un grupo particular presenta gran relevancia clínico-epidemiológica para el continente americano; los helmintos transmitidos por el suelo o geohelmintos, estos son nematodos que afectan al hombre a través de la ingesta de huevos (vía fecal-oral o alimentaria), o por penetración a través de la piel de sus larvas infectantes presentes en el suelo. Los geohelmintos con trascendencia médico-sanitaria son Ascaris lumbricoides, Trichuris trichiura, las uncinarias Ancylostoma duodenale y Necator americanus, y Strongyloides stercoralis (Prieto-Pérez et al., 2016; OMS, 2023).

El parasitólogo Norman R. Stoll, en 1947, llamó la atención sobre la enorme carga que los nematodos intestinales representan para ciertas poblaciones del planeta (Stoll, 1947). Hace 70 años se estimaba que 2.000 millones de personas, de ellos unos 300 millones de niños en edad preescolar, sobre todo residentes en áreas rurales y deprimidas del África subsahariana, sudeste de Asia y Centro y Sudamérica, estaban infectadas por geohelmintos. La infección depende de factores no biológicos como la pobreza, el analfabetismo, la falta de agua potable y de hábitos higiénicos, así como la ausencia de métodos de eliminación de excretas adecuados (Pearson, 2002; Karagiannis-Voules et al., 2015).

Estos nematodos, además de la alta morbilidad, pueden causar en los infectados manifestaciones clínicas variadas (prematuridad, bajo peso del neonato, retraso en el crecimiento y desarrollo intelectual, emaciación, diarrea, anemia, malnutrición y malabsorción intestinal) (Rey, 2001; Jardim-Botelho et al., 2008; OMS, 2023). Si, además, consideramos la frecuente coincidencia en un mismo individuo de geohelmintos diferentes junto con otros agentes patógenos como Plasmodium (malaria), bacterias como Mycobacterium tuberculosis (tuberculossi) o virus como el Virus de la Inmunodeficiencia Humana (VIH), se deduce su repercusión sobre la salud a través de ese círculo vicioso que constituyen pobreza, higiene deficiente, enfermedades prevenibles y subdesarrollo (Bethony et al., 2006; Hotez et al., 2009; Pullan et al., 2010; Kepha et al., 2015; Li et al., 2015).

Otro aspecto a considerar son los flujos migratorios, por lo que estos helmintos deben ser tomados en cuenta en el diagnóstico diferencial en los países receptores de personas procedentes de áreas endémicas (Roca et al., 2003; Cuenca et al., 2013; Vázquez et al., 2013; Vilajeliu et al., 2014; Norman et al., 2020).

Finalmente, se ha avanzado poco en el desarrollo de fármacos nuevos ante las resistencias cada vez más frecuentes y, a pesar de los programas para su tratamiento a gran escala. La Organización Mundial de la Salud (OMS) desde el año 2012 ha destinado muchos recursos cuando este grupo de agentes (geohelmintos) fueran incluidos dentro de las llamadas enfermedades desatendidas (Hotez et al., 2008; 2009).

Mundialmente 1.500 millones de personas están infectadas por helmintos transmitidos por contacto con el suelo. En las Américas, estas infecciones están presentes en toda la región y se estima que una de cada tres personas está infectada. Cerca de 46 millones de niños entre 1 y 14 años están en riesgo de infectarse por estos parásitos. Los países donde hay mayor presencia de helmintiasis son: Brasil,

Colombia, México, Bolivia, Guatemala, Haití, Honduras, Nicaragua, Perú y República Dominicana (OMS, 2023).

En Venezuela, tradicionalmente la prevalencia de los geohelmintos, suele ser mayor en el medio rural (Morales et al., 1999; Sangronis et al., 2008; Brito Nuñez et al., 2017), siendo los escolares el grupo más afectados. Sin embargo, es posible encontrar prevalencias elevadas entre escolares del medio urbano lo cual era particularmente común hace 20-30 años (Díaz y Duran, 1990; Beauchamp et al., 1995; Devera et al., 1997; Rivero Rodríguez et al., 1997; 2000; Simoes et al. 2000; Devera et al., 2000; Rivero Rodríguez et al., 2001; Al Rumhein et al., 2005).

Desde mediados de los años 2000 del siglo pasado, se ha observado una disminución en el número de casos de estos geohelmintos en el país lo que llevó a que en la actualidad sea infrecuente encontrar prevalencias que superen el 10% (Devera et al., 2008; Lemus-Espinoza et al., 2012; Traviezo-Vallez et al., 2012; Acurero et al., 2013; Devera et al., 2015; 2016; 2020a; 2020b). A pesar de ello, las geohelmintosis siguen estando presente asi que el diagnóstico adecuado sigue siendo necesario.

La confirmación de la sospecha clínico-epidemiológica debe hacerse mediante la observación de los huevos o larvas característicos de los helmintos en las heces (Rey, 2001; Botero y Restrepo, 2012; Prieto-Pérez et al., 2026). La observación de adultos expulsados también representa otra forma de diagnóstico (Botero y Restrepo, 2012). En la actualidad en los países industrializados existen herramientas de diagnóstico molecular que son altamente sensibles y específicas, pero su elevado costo limita su uso individual, aun en estos países, prefiriéndose el estudio microscópico (Lamberton y Jourdan, 2015).

Respecto a las técnicas usadas y que se aplican a las muestras fecales, los huevos pueden observarse en el examen directo pero con excepción de Ascaris lumbricoides es necesario el uso de métodos de concentración ya que las hembras suelen tener una fecundidad reducida lo que determina una baja sensibilidad del examen directo (Botero y Restrepo, 2012). Las técnicas de concentración permiten examinar una mayor cantidad de materia fecal y concentrar los huevos, así como su separación del resto de la materia fecal. Varios autores recomiendan las técnicas de sedimentación (Ritchie y Lutz) sobre las de Flotación (Faust y Willis); sin embargo, la OMS apoya el uso de la técnica de Kato en especial su versión cuantitativa (Von Schiller et al., 2013).

En varios estudios comparativos entre técnicas se ha verificado que la técnica de flotación de Willis (también llamado Willis-Molloy), a pesar de ciertas limitaciones, es útil para el diagnóstico de la mayoría de los geohlemintos (Núñez et al., 1991; Rodrigues dos Santos et al., 2020), teniendo en muchos casos resultados similares desde el punto de vista estadístico con otras técnicas (Núñez et al., 1991; Navone et al., 2005; Carvalho et al., 2012; Oliveira Menezes et al., 2013; Rodrigues dos Santos et al., 2020).

Las técnicas de flotación permiten la separación de quistes de protozoos y huevos de ciertos helmintos del exceso de residuos mediante el uso de soluciones con elevada gravedad específica. Los elementos parasitarios son recuperados de la capa superficial y los residuos se mantienen en el fondo del tubo. Con estas técnicas los preparados son más limpios que los obtenidos por sedimentación. Una de éstas técnicas es la de Willis-Malloy que permite la concentración de huevos de helmintos en el sobrenadante luego de mezclar las heces con una solución saturada de NaCl cuya densidad es de 1.200 (Navone et al., 2005).

La técnica fue desarrollado por Hastings Willis en 1921 considerado como un método concentración simple y práctico, que servía para la flotación de huevos de helmintos, pero que no era apropiado para concentrar quistes de protozoarios y ciertos tipos de huevos (Willis, 1921). La formación de cristales en la lámina y la plasmólisis de protozoos por presión osmótica cuando se exponen a la solución saturada de sal hace que esta técnica sea inadecuada para la recuperación de huevos densos y protozoos (Soares et al., 2020). Con el pasar de los años ha sido adoptada por muchos laboratorios, en especial cuando se desean diagnosticar huevos livianos como los de ancylostomídios e Hymenolepis nana (Taly, 2017).

Cuando se realizan trabajos de campo suele tenerse una gran cantidad de muestras fecales frescas que requieren ser procesadas en un corto tiempo y a veces no se tiene el personal suficiente para ello. En ese caso se recomienda preservar las muestras y realizar un análisis posterior. Sin embargo, la literatura especializada indica que la técnica de Willis se realiza con heces frescas (Melvin y Brooke, 1971). Pero otros autores (Amato Neto Corrêa, 1980; Beaver et al., 1986; Neghme y Náquira, 1991; Rey, 2001; Botero y Restrepo, 2012) señalan que la misma puede ser realizada a partir de heces preservadas en formol.

Esta técnica es ampliamente usada dentro del espectro de herramientas diagnósticas en diversos estudios en todo el continente tanto en humanos como otros animales e incluso para la búsqueda de huevos en muestras de suelo (Devera et al., 2008; Gamboa et al., 2011; Arosemena et al., 2014; De la Torre-Fiallos et al., 2023; Souza et al., 2023).

En Cuba desde hace seis década se usa una variación de la técnica original de Willis la cual se le agrega formol al líquido usado para hacer la flotación, es decir, se estaría preservando simultáneamente las formas parasitarias. Esta técnica ha tenido resultados satisfactorios y se usa de rutina en la red de labortorios clínicos en ese país

(Vázquez Martínez et al., 2012) y en muchos estudios de investigación sobre enteroparásitos (Núñez et al., 1997; Rodríguez Hernández et al., 2009; Jerez Puebla et al., 2020).

En Venezuela la técnica de Willis suele usarse de complemento a otras en el diagnóstico de geohelmintos (Devera et al., 2003; Bastidas et al., 2012). En el estado Bolívar (sur de Venezuela) desde hace varios años el Grupo de Investigación sobre Parasitosis intestinales viene desarrollando estudios que permitan mejorar las herramientas diagnósticas de los diferentes enteroparásitos, de hecho, varios estudios han empleado la técnica de Willis tanto en heces frescas (Devera et al., 1998; 1999; 2000; Al Rumhein et al., 2005; Devera et al., 2010) como preservadas (Escadon y Bienes, 2017; Medina y Gamboa, 2017; Taly, 2017). Es por ello que se desarrolló un estudio en el cual se comparó el resultado de la técnica de Willis tradicional con la modificación usada en Cuba para verificar si tienen efectividad similar.

JUSTIFICACIÓN

En Venezuela ha habido una disminución importante de la prevalencia de geohelmintos en varios estados del país en especial en Bolívar (Devera et al., 2015), sin embargo, todavía existen regiones donde se señalan elevadas prevalencias (Sangronis et al., 2008; Brito Núñez et al., 2017), sobretodo en comunidades rurales e indígenas (Rivero de Rodríguez et al., 2012; Verhagen et al., 2013; Guilarte et al., 2014), lo que determina la necesidad de hacer un diagnóstico adecuado. Esto se refiere no solamente al uso de técnicas eficientes, sino que deben ser de bajo costo y de poca complejidad (Guizelini et al., 1987).

Sabiendo las ventajas y desventajas de la técnica de Willis para el diagnóstico de helmintos intestinales, principalmente de los llamados geohelmintos, varios autores han realizado estudios comparativos con otras técnicas y con diferentes geohelmintos revelando su utilidad (dos Santos et al., 2020).

La técnica de Willis re realiza tradicionalmente con heces frescas recién emitidas (Willis, 1921; Melvin y Brooke, 1971), aunque puede hacerse con heces preservadas (Beaver et al., 1986; Rey, 2001; Botero y Restrepo, 2012; Escadon y Bienes, 2017; Medina y Gamboa, 2017; Taly, 2017). Basnuevo desarrolló en Cuba una modificación de esta técnica en la cual además de la solución salina saturada se le agrega azúcar y formol al líquido usado para hacer la flotación, siendo los resultados satisfactorios (Rodríguez Hernández et al., 2009; Vázquez Martínez et al., 2012).

Por todo lo anterior y para contribuir con el diagnóstico parasitológico de las geohelmintosis se justificó el desarrollo de un estudio para comparar los resultados entre la técnica de Willis tradicional y la modificación usada en Cuba en muestras fecales procedentes de personas con diagnóstico de geohelmintosis.

OBJETIVOS

Objetivo General

Determinar la utilidad de una modificación de la técnica de Willis en el diagnóstico de huevos de helmintos comparándola con la técnica de Willis tradicional.

Objetivos Específicos

- 1. Comparar la frecuencia de geohelmintos totales y por especies empleando la técnica de Willis modificada y la tradicional en muestras fecales frescas.
- Verificar las características morfológicas normales de los huevos encontrados en la modalidad cubana en relación a lo encontrado en la modalidad tradicional.
- 3. Establecer posibles ventajas y desventajas de usar la técnica de Willis modificada para realizar el diagnóstico de huevos de geohelmintos.

METODOLOGÍA

Tipo de estudio

Fue un estudio de tipo descriptivo, prospectivo, transversal, de campo y laboratorial.

Área de estudio

"Angostura del Orinoco" (antes Heres) es uno de los 11 municipios que integran el estado Bolívar (INE, 2014a); y a la vez, este contiene 9 parroquias (2 rurales y 7 urbanas) de las 47 que conforman a dicho estado. La superficie territorial del municipio es de 5.851km² (INE, 2014b) y tiene una población de 345.209 habitantes (23,4% del estado Bolívar) de los cuales 3.636 son indígenas pertenecientes principalmente a los pueblos kariña y pemón (INE, 2014c).

La capital es Ciudad Bolívar (08°07'45" LN 63°32'27" LO). Respecto al clima el municipio, como parte del estado Bolívar se ubica en la zona intertropical con predominio del bosque seco tropical y característicamente existen abundantes zonas de sábanas. La temperatura media anual oscila entre 29 y 33°C para el estado en general (Ewel et al. 1976) y en el municipio entre 23° y 37°. La precipitación total anual está entre 1013 y 1361 mm. En el trimestre de junio a agosto cae la mayor cantidad de lluvia, el trimestre más seco va de enero a marzo (Ferrer Paris, 2017).

Fueron seleccionadas dos comunidades de Ciudad Bolívar que cuentan con las condiciones ecoepidemiológicas propicias para la ocurrencia de parasitosis intestinales.

1. Barrio Moreno de Mendoza. Se ubica en la zona suroete de Ciudad Bolívar en el sector Las Brisas en la parroquia La Sabanita. Se trata de la comunidad oficialmente conocida como "Los verdaderos revolucionarios por la patria", accesible a través de la Avenida España en la intersección con la calle Principal El mirador o la avenida perimetral, se comprende al sector por 20 calles y 1 anexo (invasión). Según censo del consejo comunal la población es de 1300 habitantes siendo 580 menores de 18 años.

2. Barrio Cuyuní. Ubicado en la parroquia La Sabanita, lado del barrio Moreno de Mendoza. La comunidad está constituida por un total de seis calles y una población de 1400 habitantes donde 610 corresponde a población infantil.

Universo y muestra

El universo estuvo conformado por los 2700 habitantes de las dos comunidades seleccionadas.

La muestra estuvo conformada por 236 habitantes que cumplieron con los siguientes criterios de inclusión:

Criterios de inclusión

En la evaluación inicial de los habitantes para diagnosticar los casos de geohelmintosis:

- Participación voluntaria y firma del consentimiento informado.
- Aportar datos para el llenado de la ficha de control

 Suministrar una muestra fecal suficiente y apropiada para la realización de las técnicas coproparasitológicas.

Criterios de inclusión

En la evaluación comparativa de la técnica de Willis:

- Solo se emplearon muestras fecales frescas positivas para algún geohelminto en la técnica de Kato,
- La muestra debía estar en cantidad suficiente que permita hacer por duplicado la técnica de Willis (tradicional y modificada)

Recolección de datos

Se empleó un instrumento de recolección de datos estandarizado, en este caso la ficha de recolección de datos del Laboratorio de Diagnóstico Coproparasitológico del Dpto. de Parasitología y Microbiología de la Escuela de Ciencias de la Salud, Universidad de Oriente, Núcleo Bolívar (Anexo 1), al cual se le hicieron pequeñas modificaciones. Se realizarán visitas a las comunidades (Consejo comunal) y se explicará a los miembros de los consejos comunales sobre importancia del estudio para así obtener su apoyo y colaboración. Ésta será voluntaria, pero para que el habitante fuese incluido en el estudio, debió firmar el consentimiento informado respectivo (Apéndice A).

Se estableció un cronograma para la recolección de las muestras fecales y el llenado de las fichas de control. Para ello, el día anterior a cada fecha de evaluación, se entregaron los envases recolectores de heces a los habitantes.

Procesamiento de las muestras fecales

El procesamiento de las muestras se llevó a cabo en dos fases; la primera en la propia comunidad mediante las técnicas de examen directo y método de concentración de Kato (Botero y Restrepo, 2012). Para otros fines, se realizó una segunda fase en el Laboratorio de Diagnóstico Coproparasitológico del Dpto. de Parasitología y Microbiología de la Escuela de Ciencias de la Salud "Dr. Francisco Battistini Casalta", de la Universidad de Oriente, Núcleo Bolívar, en Ciudad Bolívar, donde se realizó la técnica de sedimentación espontánea (Rey, 2001), usando las heces preservadas en formol. Para el objetivo del presente estudio los resultados de esta etapa no fueron considerados.

Evaluación comparativa de la técnica de Willis:

Todas las muestras fecales frescas que resultaron positivas en la técnica de Kato, para algún geohelminto fueron seleccionadas y se les aplicó la técnica de Willis clásica y la modificación de Basnuevo de Cuba en la misma comunidad durante la actividad de campo.

Procesamiento de la muestra

Evaluación inicial de las heces frescas:

1. Examen directo de heces (Botero y Restrepo, 2012)

En una lámina portaobjeto limpia y previamente identificada, se dispensó con un gotero una gota de solución salina fisiológica en un extremo y en el otro extremo una gota de solución de lugol. Con un aplicador de madera se homogenizó la muestra fecal contenida en el envase recolector y se tomó una pequeña porción

aproximadamente 1 mg de heces, y se resuspendió mediante movimiento circulares en la gota de solución salina fisiológica y luego en el lugol. Se colocó una lámina cubreobjeto a cada preparación y se observó en el microscopio óptico con objetivo de 10x y 40x, recorriendo la preparación de manera ordenada en forma de zig-zag, comenzando con la solución salina para luego pasar a la solución de lugol. Las observaciones de cada muestra se anotaron en la respectiva ficha de control.

2. Técnica de Kato (Rey, 2001; Botero y Restrepo, 2012)

Preparación de la solución verde de malaquita.

- 100ml de glicerina
- 100ml de agua
- 1ml de la solución verde de malaquita al 3%
- ✓ Previamente se cortaron trozos de papel celofán (2,5 x 3cm). Se dejaron inmersos en la solución verde de malaquita al menos 24 horas antes de utilizarlos.
- ✓ Se tomó con un aplicador de madera, aproximadamente 1g de heces y se colocó sobre un portaobjeto previamente identificado. Con ayuda de una pinza metálica se colocó sobre las heces el papel celofán. Posteriormente con la ayuda de un papel toalla se realizó presión con los dedos para expandir las heces. Lo anterior evitó la formación de burbujas y permitió un mejor extendido de la muestra, así como la eliminación del exceso de solución de verde de malaquita.
- ✓ Se dejó actuar el colorante durante 15-20 minutos.
- ✓ Se observó al microscopio con objetivo de 10x en busca de los huevos característicos de los helmintos.

Comparación de las modalidades de la técnica de Willis:

1. Técnica de Willis Tradicional con heces frescas (Melvin y Brooke, 1971):

- Preparación de la solución salina saturada: se agregó al agua destilada caliente NaCl hasta que ésta no se disolvió más (saturación). Se traspasó el líquido a un recipiente con tapa y se guardó hasta su uso.
- La técnica se realizó en vasos de plástico desechables pequeños (40-50 ml de capacidad). Para mejores resultados se realizó un lavado previo de las heces con solución salina fisiológica y colado por gasa, antes del proceso de flotación.
- El homogeneizado obtenido después de colado se colocó en el vaso, sobre el cual se colocó una lámina portaobjeto previamente rotulada con el código de la muestra respectiva. Se agregó solución salina saturada hasta llenar el recipiente.
- El líquido debía entrar en contacto con la lámina. Si eso no ocurre se agrega lentamente más solución salina saturada teniendo cuidado de no derramar el líquido.
- Se dejó en reposo por 20 minutos.
- Después se evertió el portaobjeto tomándolo por uno de sus extremos y volteándolo rápidamente asegurándose de que la gota de líquido quede adherida al vidrio.
- Para su observación al microscopio se colocó una laminilla 22 x 22 mm y se examinará con objetivo de 10X.

2. Técnica de Willis modificada de Basnuevo con heces frescas (Vázquez Martínez et al., 2012):

Esta modificación emplea azúcar y formol, y disminuye la cantidad de cloruro de sodio. Preparación de la solución de alta densidad a base de sal, azúcar y de formol:

- ✓ Cloruro de sodio......180 g
- ✓ Azúcar......500 g
- ✓ Formol al 40 %......20 ml
- ✓ Agua destilada.....1200 ml
- Se mezcló todo en un recipiente, agua destilada debe estar caliente. Esta solución debe dar una densidad de 1200. Se deja enfriar y se guarda en envase adecuado hasta su uso.
- El procedimiento se realizó siguiendo los mismos pasos que el método tradicional.

Análisis de datos

A partir de las fichas de recolección de datos se elaboró una base de datos con el programa SPSS versión 21.0 para Windows. Para el análisis de los resultados se utilizaron frecuencias relativas (%) y se realizó un analisis comparativo entre las dos modificaciones de la tecncia de Willis (tradicional y modificado de Basnuevo), según resulatdo total y por taxones de geohelmintos.

Consideraciones bioéticas

La investigación se desarrolló apegada a las normas bioéticas internacionales según la declaración de Helsinki sobre uso de seres humanos para investigación (WMA, 2008).

RESULTADOS

En julio de 2023 fueron evaluadas las heces de 136 habitantes del barrio Moreno de Mendoza y 100 del barrio Cuyuní de Ciudad Bolívar. Se obtuvo una prevalencia de helmintos intestinales de 5,9% (8,8% en Moreno de Mendoza y 2% en Cuyuní). Los helmintos diagnosticados según barrio en la técnica de Kato se presentan en la tabla 1. El de mayor prevalencia fue Ascaris lumbricoides con 11 casos (10 en Moreno de Mendoza y 1 en Cuyuní). De estas 14 muestras fecales positivas, 12 estaban en cantidad suficiente que permitió realizar las dos modalidades de la técnica de Willis (10 en Moreno de Mendoza y 2 en Cuyuní).

Considerando el resultado de la técnica de Willis se determinó que de las 12 muestras positivas en Kato y sometidas a la técnica de Willis, 11 estaban positivas en la modalidad tradicional y 10 en la modalidad cubana, para una frecuencia de helmintos de 91,7% y 83,3%, respectivamente (Gráfico 1).

Cuando se compara el rendimiento diagnóstico de cada modalidad según el taxón de helminto (Tabla 2), se verifica que de los 9 casos de A. lumbricoides en el Kato, Willis tradicional solo dejo de diagnosticar uno, mientras que la modificación cubana no diagnóstico dos casos. Respecto a Trichuris trichiura, en ambas modalidades de Willis se perdió un caso (no identificado). Finalmente, los dos casos de ancylostomideos se identificaron en ambas modalidades.

Respecto a la morfología de los huevos observados, de estos helmintos no hubo diferencia entre las dos modalidades, ya que la anatomía característica se mantuvo en ambos casos. En las Fig. 1 y 2 se muestran comparativamente huevos de A. lumbricoides y T. trichiura en ambas modalidades y con el mismo aumento.

Tabla 1

PREVALENCIA DE HELMINTOS EN LA TÉCNICA DE KATO,
SEGÚN TAXON HABITANTES DE LOS BARRIOS "MORENO DE
MENDOZA" Y "CUYUNÍ", CIUDAD BOLÍVAR, ESTADO BOLÍVAR,
VENEZUELA. JULIO DE 2023

		I	Barrio			
Taxón de	MM (n=136)		Cuy (n=100)		TOTAL (n=236)	
Tuxon uc						
helminto	No.	%	No.	%	No.	%
Ascaris lumbricoides	10	7,3	1	1,0	11	4,7
Trichuris trichiura	3	2,2	0	0,0	3	0,4
Ancylostomideos	1	0,7	1	1,0	2	0,8

MM: Barrio "Moreno de Mendoza"; Cuy: Barrio Cuyuní

Grafico 1

FRECUENCIA DE HELMINTOS SEGÚN MODALIDAD DE LA TÉCNICA DE WILLIS. HABITANTES DE LOS BARRIOS "MORENO DE MENDOZA" Y "CUYUNÍ", CIUDAD BOLÍVAR, ESTADO BOLÍVAR, VENEZUELA. JULIO DE 2023

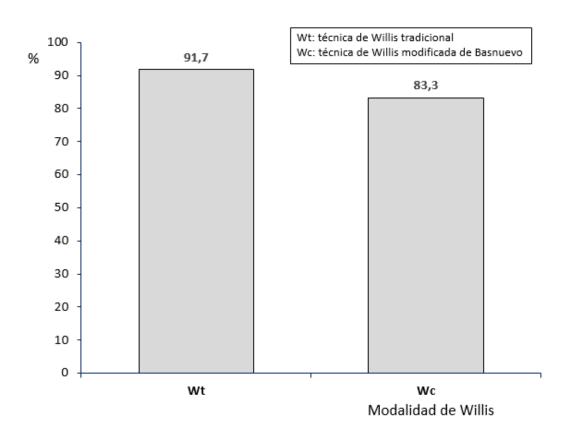


Tabla 2

FRECUENCIA DE HELMINTOS SEGÚN TAXON Y MODALIDAD DE LA TECNICA DE WILLIS. HABITANTES DE LOS BARRIOS "MORENO DE MENDOZA" Y "CUYUNÍ", CIUDAD BOLÍVAR, ESTADO BOLÍVAR, VENEZUELA. JULIO DE 2023

Taxón de	Wt		Wc		TOTAL	
helminto	No.	%	No.	%	No.	%
Ascaris lumbricoides	8	88,9	7	77,8	9	3,8
Trichuris trichiura	1	50,0	1	50,0	2	0,8
Ancylostomideos	2	100,0	2	100,0	2	0,8

Wt: técnica de Willis tradicional; Wc: técnica de Willis, modificación cubana

Figura 1

Huevos de Ascaris lumbricoides. Magnificación 400X. A. En técnica de
Willis Tradicional. B. En técnica de Willis modificada

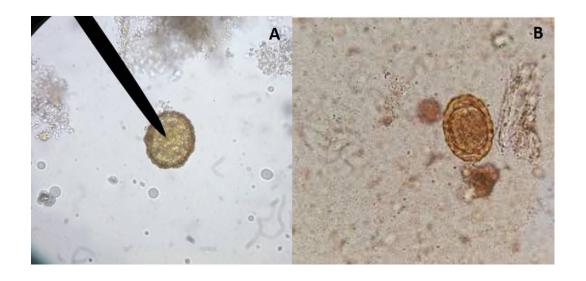
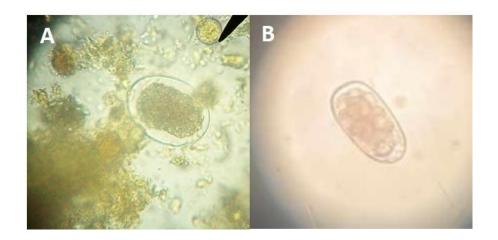



Figura 2

Huevos de Ancylostomideos. Magnificación 400X. A. En técnica de Willis

Tradicional. B. En técnica de Willis modificada

DISCUSIÓN

En julio de 2023 se realizaron sendos estudios coproparasitológicos en los Barrios Moreno de Mendoza y Cuyuni, parroquia La Sabanita, de Ciudad Bolívar se evaluaron 136 y 100 habitantes. Estas comunidades presentaban las características propicias para la ocurrencia de parasitosis intestinales por tener deficientes condiciones sociosanitarias y de saneamiento ambiental. Las muestras fecales, para otros fines, se analizaron con las técnicas de examen directo y Kato. Un total de 14 resultaron positivas para algún geohelminto (5,9%).

Esta prevalencia fue baja aunque se esperaba ya que se sabe de la baja prevalencia actual de los helmintos intestinales en Ciudad Bolívar (Devera et al., 2015; 2020a). Se debe resaltar que fueron seleccionadas dos comunidades con las condiciones ecoepidmeiologicas propicias y se empleó la técnica diagnóstica recomendada por la OMS (Kato) para geohelmintos (Von Schiller et al., 2013).

De esas 14 muestras fecales, 12 fueron sometidas a la técnica de Willis para comparar la modalidad tradicional con una modificación usada en Cuba. La eficacia diagnóstica fue similar (91,7% vs. 83,3%). Aunque la cantidad de casos de helmintos fue pequeña, los resultados obtenidos con la técnica de Willis modificada son alentadores ya que no revelan diferencias de efectividad diagnostica ni global ni por taxones de helmintos comparada con la modalidad tradicional.

La frecuencia global de helmintos fue de 91,7% (Willis tradicional) y 83,3% (Willis cubano), lo que representa una pérdida (casos no diagnosticados) de 1 y 2 casos respectivamente, que no parecen ser relevantes o significativo. Respecto a los taxones, el que presentó mayores pérdidas o fallas de diagnóstico fue A. lumbricoides con 1 y 2 casos respectivamente.

La técnica de Willis sirve para el diagnóstico de huevos de helmintos, pero es particularmente útil para ancylostomideos e Hymenolepis nana; eso se debe a que son huevos pequeños (40 a 60 um) y característicamente muy livianos por lo que las técnicas de concentración basadas en la sedimentación no son de elección (Melvin y Brooke, 1971). Los huevos de A. lumbricoides debido a su tamaño, tienden a sedimentar más que a flotar asi que se prefieren técnicas de sedimentación. Quizá esta sea una de las razones de las pérdidas encontradas.

A pesar de lo anterior, varios estudios comparativos de técnicas han demostrado la utilidad del Willis en el diagnóstico de helmintos intestinales (Núñez et al., 1991; Von Schiller et al., 2013; Medina y Gamboa, 2017; Rodrigues dos Santos et al., 2020).

En los ancilostomideos, para quienes la técnica de Willis es más recomendada, los dos casos encontrados fueron identificados en ambas modalidades y aunque esta cantidad de casos no permite emitir conclusiones, orienta y confirma que realmente esta técnica (incluso la modalidad cubana) es realmente útil para poner en evidencia los huevos de estos helmintos como ha sido demostrado en otros estudios incluso usando heces preservadas (Taly, 2017).

Se debe insistir que el no diagnosticar 1 o 2 casos puede ser considerado parte del error tolerado debido fundamentalmente a la subjetividad del observador más que a un problema técnico.

En Cuba, la modificación de la técnica de Willis propuesta pro Basnuevo usa azúcar y formol, además de la solución salina saturada, y a lo largo de casi 6 décadas ha tenido resultados satisfactorios siendo la técnica empleada en el sistema medico asistencial oficial y en diversos estudios epidemiológicos en Cuba (Núñez et al.,

1997; Rodríguez Hernández et al., 2009; Vázquez Martínez et al., 2012; Jerez Puebla et al., 2020).

Respecto a la morfología de los huevos de los tres helmintos diagnosticados no hubo diferencia entre las dos modalidades; se debe destacar que la modalidad cubana emplea formol, lo que indica que antes de la observación microscópica se está preservando la muestra fecal lo que determinaría una conservación de la anatomía de los huevos. Esto podría ser de gran utilidad en el caso de estudios epidemiológicos donde se tienen muchas muestras y poco tiempo o cuando se tienen muestras preservadas en formol. En este último caso se podría aplicar la modalidad cubana en estas muestras preservadas.

La técnica de Willis tradicional se hace con heces frescas aunque los libros de texto clásico informan que podría hacerse con heces preservadas (Amato Neto Corrêa, 1980; Beaver et al., 1986; Neghme y Náquira, 1991; Rey, 2001; Botero y Restrepo, 2012). El hecho de que esta modalidad use formol lo que revela es que en Cuba se viene haciendo la técnica con heces preservadas. Estudios recientes realizados en Venezuela han encontrado resultados similares cuando se usa heces frescas y preservadas para el diagnósticos de helmintos en la técnica de Willis (Escadon, y Bienes, 2017; Medina y Gamboa, 2017; Taly, 2017; Pérez y Páez, 2023).

Respecto a las ventajas y desventajas de ambas modalidades, la primera ventaja de la variedad cubana es que tendría un rendimiento diagnóstico similar a la modalidad tradicional. Otra posible ventaja de usar esta variante es que emplea formol, incluso en menor cantidad al empleado en el proceso de preservación fecal ordinario. Cabría aquí considerar como una desventaja la adición de otro reactivo (azúcar), sin embargo, ésta es fácil de obtener y relativamente económica, asi que realmente no implica una desventaja. Además, de que la preparación de la solución es

tan sencillo como en la modalidad tradicional. Finalmente, otra ventaja es que no se pierde la anatomía característica de los huevos.

Este estudio tiene una limitante que es la poca cantidad de muestras consideradas, pero una vez comprobada la utilidad de esta variante de la técnica de Willis, ahora es necesario realizar estudios que incluyan un número mayor de muestras y se examinen heces positivas y negativas, realizando además, los análisis con todo el rigor estadístico respectivo. Es decir, esta investigación puede ser considerada el paso inicial o quizá un estudio piloto para mayores investigaciones.

A la luz de estos resultados y una vez realizados los otros estudios complementarios, se podría plantear el uso de esta modalidad de Willis de forma rutinaria para el diagnóstico de helmintos intestinales.

CONCLUSIÓN

La modificación cubana de la técnica de Willis es útil para el diagnóstico de huevos de helmintos, siendo sus resultados comparables a los obtenidos con la técnica de Willis tradicional, tanto de manera global como por taxones de helmintos.

REFERENCIAS BIBLIOGRAFÍCAS

- Acurero E, Ávila A, Rangel L, Calchi M, Grimaldos R, Cotiz M. Protozoarios intestinales en escolares adscritos a instituciones públicas y privadas del municipio Maracaibo-estado Zulia. Kasmera. 2013; 41(1):50-8.
- Al Rumhein F, Sánchez J, Requena I, Blanco Y, Devera R. Parasitosis intestinales en escolares relación entre su prevalencia en heces y lecho subungueal. Rev. Biomed. 2005; 16:227-37.
- Amato Neto, V., Corrêa, L.L. 1980. Exame parasitológico das fezes. Sarvier. São Paulo. pp.100.
- Arosemena, V., Castillo, C., Guerra, G. Detección de enteroparásitosis humana y fuentes de contaminación ambiental en el río Chagres, Panamá. Rev Venez Salud Pública. 2018; 2(2): 35-44.
- Bastidas G, Rojas C., Martínez E, Loaiza L., Guzmán M, Hernández V. Prevalencia de parásitos intestinales en manipuladores de alimentos en una comunidad rural de Cojedes, Venezuela. Acta méd. costarric. 2012; 54: 241- 245.
- Beauchamp, S., Flores, T., Tarazón, S. 1995. Blastocystis hominis: prevalencia en alumnos de una escuela básica. Maracaibo, Edo. Zulia. Venezuela. Kasmera. 23:43-67.

- Beaver, P.C, Jung, R.C., Cupp, E.W. 1986. Parasitologia Clínica. Salvat Editores. México, 8va. ed. pp. 882.
- Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil transmitted helminth infections: Ascaris, trichuriasis and hookworm. Lancet. 2006; 367:1521–32.
- Botero, D., Restrepo, M. 2012. Parasitología Humana. Edit. Médica Panamericana. Medellín, Colombia. 5° ed. pp.733.
- Brito Núñez, J., Landaeta Mejías, J., Chávez Contreras, A., Gastiaburú Castillo, P.,
 Blanco Martínez, Y. 2017. Prevalencia de parasitosis intestinales
 en la comunidad rural Apostadero, Municipio Sotillo, Estado
 Monagas, Venezuela. Rev. Cient. Cienc. Méd. 20(2): 7-14.
- Carvalho GL, Moreira LE, Pena JL, Marinho CC, Bahia MT, Machado-Coelho GL.

 A comparative study of the TF-Test®, Kato-Katz, Hoffman-Pons-Janer, Willis and Baermann-Moraes coprologic methods for the detection of human parasitosis. Mem Inst Oswaldo Cruz. 2012; 107(1):80-4.
- Cuenca JA, Salas J, Cabezas MT, Vázquez J, Soriano MJ, Cobo F. Uncinariasis importada en Almería. Enf Infec Microbiol Clin. 2013; 31:599–601.
- De la Torre-Fiallos AV, Pacha-Jara AG, Caiza-Vega MR. Parasitosis intestinales en niños del cantón Ambato, Ecuador. Medicina & Laboratorio. 2023; 27(4):345-356.

- Devera R, Blanco Y, Requena I, Tedesco R, Alvarado J, Alves N, et al. Enteroparásitos en estudiantes de la Escuela Técnica Agropecuaria Robinsoniana "Caicara", Caicara del Orinoco, municipio Cedeño, estado Bolívar, Venezuela. Kasmera. 2010; 38(2): 118-127.
- Devera R, Requena I, Velásquez V, Castillo H, Guevara R, De Sousa M, et al.

 Balantidiasis en una comunidad rural del Estado Bolívar,

 Venezuela. Bol Chil Parasitol. 1999; 54(1-2):7-12.
- Devera RA, Velasquez VJ, Vasquez MJ. Blastocystosis in preschool children from bolivar city, Venezuela. Cad Saude Pública. 1998; 14(2):401-7.
- Devera R, Aguilar K, Maurera R, Blanco Y, Amaya I, Velásquez,V. Parásitos intestinales en alumnos de la Escuela Básica Nacional "San José De Cacahual". San Félix, Estado Bolívar, Venezuela. Rev. Academia. 2016; 15(35):35-46.
- Devera, R., Amaya, I., Blanco, Y. 2020a. Prevalencia de parásitos intestinales en niños preescolares del municipio Angostura del Orinoco, estado Bolívar, Venezuela. 2016-2018. Kasmera. 48(2):e48231681.
- Devera, R., Blanco, Y., Amaya, I. 2015. Prevalencia de parásitos intestinales en escolares de Ciudad Bolívar, Venezuela: comparación entre dos periodos. Kasmera 43(2): 122-129.
- Devera, R., Cermeño, J., Blanco, Y., Bello, M., Guerra, X., De Sousa, M., et al. 2003.

 Prevalencia de Blastocystis y otras parasitosis intestinales en una

- comunidad rural del Estado Anzoátegui, Venezuela. Parasitol. Latinoam. 58:95-100.
- Devera, R., González, V., Marín, I., Medina, L., Gil, M., Rodríguez, M., 2020b.

 Prevalencia de parásitos intestinales en niños de Tucupita,

 Estado Delta Amacuro, Venezuela. Saber. 32. 269-277.
- Devera, R., Niebla, P.G., Nastasi, C.J, Velásquez, A.V., González, M.R. 2000.

 Prevalencia de Trichuris trichiura y otros enteroparásitos en siete escuelas del área urbana de Ciudad Bolívar, Estado Bolívar, Venezuela. Saber. 12: 41-47.
- Devera, R., Spósito, A., Blanco, Y., Requena, I. 2008. Parasitosis intestinales en escolares: cambios epidemiológicos observados en Ciudad Bolívar. Saber. 20:47-56.
- Devera, R.A., Niebla-Punos, G., Velásquez, V.J., Nastasi-Catanese, J.A., González-Meneses, R. 1997. Prevalence of Blastocystis hominis infection in schoolchildren from Bolivar City, Venezuela. Bol. Chil. Parasitol. 52(3-4):77-81.
- Díaz, I., Durán, T.F. 1990. Prevalencia de parasitosis intestinales en alumnos de educación básica del Municipio Cacique Mara, Maracaibo-Estado Zulia. Kasmera. 18:46-71
- Escadon, A., Bienes, A. 2017. Diagnóstico de huevos livianos de helmintos mediante la tecnica de willis: comparacion usando heces frescas y preservadas. Trabajo de grado. Dpto. Parasitol.-Microbiol. Esc. Cs. De la Salud. UDO-Bolívar. pp. 38 (Multígrafo).

- Ewel J, Madriz A, Tosi Jr J.. Zonas de vida de Venezuela. Memoria explicativa sobre el mapa ecológico. 4ª Ed. Editorial Sucre, Caracas, Venezuela, 1976; pp. 270.
- Ferrer Paris, J. 2017. Caracterización ambiental de la ruta de NeoMapas: NM20 Borbón, estado Bolívar (CNEB i19). Figshare. Disponible: https://figshare.com/articles/journal_contribution/Caracterizaci_n _ambiental_de_la_ruta_de_NeoMapas_NM20_Borb_n_estado_ Bol_var_CNEB_i19_/4745734. Consultado el 25 de noviembre de 2023.
- Gamboa MI, Navone GT, Orden AB, Torres MF, Castro LE, Oyhenart EE. Socioenvironmental conditions, intestinal parasitic infections and nutritional status in children from a suburban neighborhood of La Plata, Argentina. Acta Trop. 2011; 118(3):184-9.
- Guilarte, D., Gómez, E., El Hen, F., Grantón, A., Mairn, L. 2014. Aspectos epidemiológicos y hematológicos asociados a las parasitosis intestinales en indígenas Waraos de una comunidad del estado Sucre, Venezuela. Interciencia. 39: 116-121.
- Guizelini, E., Castilho, V.L., Moreira, A., Campos, R., Amato Neto, V., Sant'Ana E., et al. 1987. Pesquisa de ovos pesados de helmintos nas fezes: estudo comparativo entre os métodos da sedimentação espontânea em água e de Ritchie. Rev. Soc. Bras. Med. Trop. 20(1):23-24.

- Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. Helminth infections: The great neglected tropical diseases. J Clin Invest. 2008; 118:1311–21.
- Hotez PJ, Fenwick A, Savioli L, Molineux DH. Rescuing the bottom billion through control of neglected tropical diseases. Lancet. 2009; 373:1570–5.
- INE (Instituto Nacional de Estadística) 2014c. División Político Territorial de la República Bolivariana de Venezuela. Septiembre de 2013. Disponible:

http://www.ine.gov.ve/documentos/see/sintesisestadistica2012/es tados/Bolivar/cuadros/Poblacion4.xls. Consultado el 25 de noviembre de 2023.

- INE (Instituto Nacional de Estadística). 2014a. Resultados por entidad federal y municipios del Estado Bolívar. Censo nacional de población y vivienda 2011. Disponible: http://www.ine.gov.ve/documentos/AspectosFisicos/Divisionpoli ticoTerritorial/pdf/DPTconFinesEstadisticosOperativa2013.pdf. Consultado el 25 de noviembre de 2023.
- INE (Instituto Nacional de Estadística). 2014b. Densidad poblacional según municipio de Bolívar. Censo nacional de población y vivienda 2011. Disponible: http://www.ine.gov.ve/documentos/Demografia/CensodePoblaci onyVivienda/pdf/bolivar.pdf. Consultado el 25 de noviembre de 2023.

- Jardim-Botelho, A., Raff, S., Vila Rodrigues, R., Hoffman, H., Diemert, D., Correa-Oliveira, R., et al. 2008. Hookworm, Ascaris lumbricoides infection and polyparasitism associated with poor cognitive performance in Brazilian schoolchildren. Trop. Med. Internat. Health. 13: 994-1004.
- Jerez-Puebla L, Núñez-Fernádez F, Atencio-Millán I, Cordoví-Prado R, Rojas-Rivero L, Fresco-Sampedro Y, et al. Frecuencia de infección por cestodos en el Laboratorio Nacional de Referencia de Parasitismo Intestinal-IPK, Cuba, 2010-2018. Rev Cubana Med Trop. [Internet]. 2020 [citado 12 Ene 2024]; 72 (3) Disponible en:

https://revmedtropical.sld.cu/index.php/medtropical/article/view/526

- Karagiannis-Voules DA, Biedermann P, Ekpo UF, Garba A, Langer E, Mathieu E, et al. Spatial and temporal distribution of soil-transmitted helminth infection in sub-Saharan Africa: A systematic review and geostatistical meta-analysis. Lancet Infect Dis. 2015; 15:74–84.
- Kepha S, Nuwaha F, Nikolav B, Gichuki P, Edwards T, Allen E, et al. Epidemiology of coinfection with soil transmitted helminths and Plasmodium falciparum among school children in Bumula District in western Kenya. Parasit Vectors. 2015; 8:1–10.
- Lamberton, P.H., Jourdan, P.M. 2015. Human Ascariasis: Diagnostics Update. Curr Trop Med Rep. 2(4):189-200.

- Lemus-Espinoza, D., Maniscalchi, M., Kiriakos, D., Pacheco, F., Aponte, C., Villarroel, O. et al., 2012. Enteroparasitosis en niños menores de 12 años del estado Anzoátegui, Venezuela. Rev. Soc. Venezol. Microbiol. 32:139-147.
- Li XX, Chen JX, Wang LX, Tian LG, Zhang YP, Dong SP, et al. Prevalence and risk factors of intestinal protozoan and helminth infections among pulmonary tuberculosis patients without HIV infection in a rural county in PR China. Acta Trop. 2015; 149:19–26.
- Medina, M., Gamboa, G. 2017. Diagnóstico de anquilostomosis: uso de heces preservadas en formol en la técnica de Willis. Trabajo de grado. Dpto. Parasitol.-Microbiol. Esc. Cs. De la Salud. UDO-Bolívar. pp. 31 (Multígrafo).
- Melvin, D.M., Brooke, M.M. 1971. Métodos de laboratorio para diagnóstico de parasitosis intestinales. Nueva editorial Interamericana. México. 1a. ed. pp. 198.
- Morales, G., Pino, L., Arteaga, C., Martinella, L., Rojas, H. 1999. Prevalencia de las geohelmintiasis intestinales en 100 municipios de Venezuela (1989-1992). Rev. Soc. Bras. Med. Trop. 32:263-270.
- Navone, G., Gamboa, M., Kozubsky, L., Costas, M., Cardozo, M., Sisliauskas, M., González, M. 2005. Estudio comparativo de recuperación de formasparasitarias por tres diferentes métodos deenriquecimiento coproparasitológico. Parasitol Latinoam 60: 178-181.

- Neghme, A., Naquira, C. 1991. Uncinariasis. En: Atías-Neghme Parasitología Clínica. Mediterráneo. 3era ed. Santiago. Cap. 19:176-180.
- Norman FF, Chamorro S, Comeche B, Pérez-Molina JA, López-Vélez R. Update on the major imported helminth infections in travelers and migrants. Future Microbiol. 2020; 15:437-444.
- Núñez F, Ginorio D, Finlay C. 1997. Control de la calidad del diagnóstico coproparasitológico en la provincia de Ciudad de La Habana, Cuba. Cad. Saúde Pública. 13(1):67-72.
- Núñez, F., Sanjurjo Gonzalez, E., Villalvilla, C., Finlay, C. 1991. Comparación de varias técnicas coproparasitológicas para el diagnóstico de geohelmintiasis intestinales. Rev. Inst. Med. trop. S. Paulo 33(5):403-406.
- Oliveira Menezes R, Mendonça Gomes M, Ferreira Barbosa F, Dantas Machado R, Ferreira de Andrade R, Ribeiro D'Almeida Couto A. Sensibilidade de métodos parasitológicos para o diagnóstico das enteroparasitoses em macapá amapá, Brasil. Rev Biol Ciênc Terra. 2013; 13(2): 66-73.
- OMS (Organización Mundial para la Salud). Geohelmintiasis. 2023. [citado 20 abril 2023]. Disponible en: https://www.paho.org/es/temas/geohelmintiasis.
- Pearson RD. An update of the geohelminths: Ascaris lumbricoides, hookworms,

 Trichuris trichiura, and Strongyloides stercoralis. Curr Infect Dis

 Reports. 2002; 4:59–64.

- Pérez D, Páez G. Técnica de Willis: comparación usando heces frescas y preservadas en el diagnóstico de huevos de Ascaris lumbricoides. Trabajo de grado. Dpto. Parasitol.-Microbiol. Esc. Cs. De la Salud. UDO-Bolívar. 2023; pp. 31 (Multígrafo).
- Prieto-Pérez L, Pérez-Tanoira R, Cabello-Úbeda A, Petkova-Saiz E, Górgolas-Hernández-Mora M. Geohelmintos. Enferm Infecc Microbiol Clin. 2016; 34(6):384-9.
- Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010.

 Parasit Vectors. 2014; 7:37.
- Rey, L. 2001. Parasitologia. Edit. Guanabara-Koogan. Brasil. 3ra. ed. pp. 831.
- Rivero de Rodríguez, Z., Churio, O., Bracho Mora, A., Calchi La Corte, M., Acurero, E., Villalobos, R. 2012. Relación entre geohelmintiasis intestinales y variables químicas, hematológicas e IgE, en una comunidad yukpa del estado Zulia, Venezuela. Rev. Soc. Ven. Microbiol. 32:55-61.
- Rivero Rodríguez, Z., Chango Gómez, Y., Iriarte Nava, H. 1997. Enteroparásitos en alumnos de la Escuela Básica Dr. "Jesus María Portillo", Municipio Maracaibo, Edo. Zulia, Venezuela. Kasmera. 25(2): 121-144.
- Rivero Rodriguez, Z., Chourio-Lozano, G., Díaz, I., Cheng, R., Rucson, G. 2000.

 Enteroparásitos en escolares de una institución pública del municipio Maracaibo, Venezuela. Invest. Clin. 41: 37-57.

- Rivero Rodríguez, Z., Díaz, I., Acurero, E., Camacho, M.C., Medina, M., Rios, L. 2001. Prevalencia de parásitos intestinales en escolares de 5 a 10 años de un instituto del municipio Maracaibo, Edo. Zulia-Venezuela. Kasmera. 29(2):153-170.
- Roca C, Balanzó X, Sauca G, Fernández-Roure JL, Boixeda R, Ballester M.
 Uncinariasis importada por inmigrantes africanos: estudio de 285
 casos. Med Clin (Barc). 2003; 121:139–41.
- Rodrigues dos Santos, K., Rodrigues Ciro, E., Silva Rodrigues Miranda, L., Nogueira Lino, M., Cavalcante de Sousa, S. 2020. Comparação entre três técnicas coproparasitológicas na investigação de parasitos intestinais de seres humanos. Rev. Elet. Acervo Saúde. 52:1-9.
- Rodríguez Hernández M, Travieso Díaz S, Hernandez Garcia S. Diagnóstico de parasitismo intestinal en niños hospitalizados: Pinar del Río, año 2007- 2008. Universidad Médica Pinareña. [Internet] 2009; 5(2). Disponible: https://www.redalyc.org/articulo.oa?id=638267075002.
- Sangronis, M., Rodríguez, A., Pérez, M., Oberto, L., Navas, P., Martínez, D. 2008 Geohelmintiasis intestinal en preescolares y escolares de una población rural: realidad socio-sanitaria. Estado Falcón, Venezuela. Rev. Soc. Venezol. Microbiol. 28:14-19
- Simoes, M., Rivero, Z., Díaz, I., Carreño, G., Lugo, M., Maldonado, A., et al. 2000.

 Prevalencia de enteroparásitos en una Escuela urbana en el

 Municipio San Francisco, estado Zulia, Venezuela. Kasmera.

 28(1):27-43.

- Soares FA, Benitez ADN, Santos BMD, Loiola SHN, Rosa SL, Nagata WB, et al. historical review of the techniques of recovery of parasites for their detection in human stools. Rev Soc Bras Med Trop. 2020; 53:e20190535.
- Souza JBB, Silva ZMA, Alves-Ribeiro BS, Moraes IS, Alves-Sobrinho AV, Saturnino KC, et al. Prevalence of Intestinal Parasites, Risk Factors and Zoonotic Aspects in Dog and Cat Populations from Goiás, Brazil. Vet Sci. 2023; 10(8):492.
- Stoll NR. This wormy world. J Parasitol. 1947; 33:1–18.
- Taly E. Técnica de Willis: comparación usando heces frescas y preservadas en el diagnóstico de uncinarias. Trabajo de grado. Dpto. Parasitol.-Microbiol. Esc. Cs. De la Salud. UDO-Bolívar. 2017; pp. 31 (Multígrafo).
- Traviezo-Valles, L., Yánez, C., Lozada, M., García, G., Jaimes, C., Curo, A., et al. 2012. Enteroparasitosis en pacientes de la comunidad educativa, escuela "Veragacha", estado Lara, Venezuela. Rev. Méd-Cient "Luz Vida". 3(1):5-9.
- Vázquez Martínez, J., Cedeño Borges, M., Collazo Díaz, M., Jiménez Suárez, M., Quintero Hernández, L., Barletta Del Castillo, L. 2012. Folleto de protozoología y técnicas parasitológicas. Medisur [revista en Internet]. [citado 2 de mayo 2023]; 10(2):[aprox. 11 p.]. Disponible en: https://medisur.sld.cu/index.php/medisur/article/view/2019

- Vázquez S, Cenzual G, Merino FJ. Epidemiología de las helmintiasis en una zona del sur de Madrid. Rev Clin Esp. 2013; 213:122–4.
- Verhagen, L.M., Incani, R.N., Franco, C.R., Ugarte, A., Cadenas, Y., Sierra Ruiz, C.I., et al. 2013. High malnutrition rate in Venezuelan Yanomami compared to Warao Amerindians and Creoles: significant associations with intestinal parasites and anemia. PLoS One. 8:e77581.
- Vilajeliu A, de las Heras P, Ortiz G, Pinazo MJ, Gascón J, Bardají A. Parasitosis importada en la población inmigrante en España. Rev Esp Salud Pública. 2014; 88:783–802.
- Von Schiller I, Mazo Berrío L, Salazar Giraldo M, Montoya Palacio M, Botero Garcés J. Evaluación de tres técnicas coproparasitoscópicas para el diagnóstico de geohelmintos intestinales. Iatreia. 2013; 26(1):15-24.
- Willis HH. A simple levitation method for the detection of hookworm ova. Med. J. Aust. 1921; 11: 375-6.
- WMA (World Medical Association). Ethical principles for medical research involving human subjects. Declaration of Helsinki. 2008.

 Disponible: http://www.wma.net/es/
 30publications/10policies/b3/. (Acceso 01.01.2024).

APÉNDICES

Apéndice A.

Consentimiento informado

Yo,		ti	tular	de la c	edula	a de io	dentidad	No.
,		repres	entai	nte				de
		·	Не	sido i	nforn	nado	(a) sobr	e el
estudio de Parasitosis Intestina	les que	está de	sarro	llando	el	Depar	tamento	de
Parasitología y Microbiología y O	Grupo de	Parasito	osis	intestii	nales,	de la	Escuela	a de
Ciencias de la Salud Dr. "Francis	sco Virgi	lio Battis	stini	Casalt	a", c	uyos 1	responsa	bles
son los profesores I	Rodolfo	Deve	era	у	la	ıs	Bachill	eres
	у _						, el	cual
se realiza con el objetivo de det								
habitantes de					_•			
Teniendo pleno conocimiento d	le dicho	estudio	y c	ompre	nsión	de	los posi	bles
beneficios, doy mi consentimie	nto volu	ntario p	ara	que n	ni o	repre	sentado	sea
incluida(o) en la investigación a	además a	cepto y	auto	orizo (que s	ea an	alizada	una
muestra de heces de mi represe	entado pa	ra los f	ines	antes	s mei	nciona	ado, ade	más
autorizo para que, de ser necesario	o, reciba	el tratam	iento	o espec	ífico	•		
También se me ha informado que	e puede 1	etirarme	de	dicho	estud	io en	el mom	ento
que lo desee.								
En a	los	_ días de	l me	s de		d	el año 2	023.
	Fir	ma						
Investigador						Test	igo	

ANEXOS

Anexo 1

Ficha de Control Individual. Estudio de las Parasitosis intestinales

Nombre completo: Edad: Dirección Completa:	Sexo:	\square M \square F	Nivel:	Fech	na:		
Natural de:				Tiempo de resider	ncia:		
Manifestaciones clínicas a	actuales:						
1 □ Diarrea	7 □ Es	treñimiento	-diarrea	13 □ Nauseas			
2 □ Vómitos		uxismo		14 □ Expulsión de vermes			
3 □ Dolor abdominal	9 🗆 Pr	urito anal		15 □ Hiporexia			
4 ☐ Meteorismo	10 □ Pio	cor nasal		16 □ Otros. Cuales	?		
5 ☐ Flatulencia	11 □ Pé	rdida de pes	SO	□ NINGUNA			
6 □ Distensión abdominal			cutáneo-				
Tto. Antiparasitari	mucosa		1.	Cuando (ú	ltimo):		
Previo Antiparasitari	0 🗆 51 🗅	INO Cua	.1.	Cuando (u.	itiiio).		
110110							
Características socio econ	ómicas y	sanitarias	:				
Tipo de Casa:		acterísticas:					
No de habitantes	No.	de Hab	itaciones	No. Dorn	nitorios		
Hacinamiento: SI NO							
Cuantas personas duerme							
Ingreso Familiar			Ocupación	n Jefe de Familia			
Ingreso Familiar Grado de instrucción de N Grado de instrucción de Pa	Madre		Grado de i	instrucción de Jefe d	e Familia		
Grado de instrucción de Pa	dre	_ Profesió	on de Madı	re y Padre	·		
Estratificación del grupo	familiar	según Graf	far modif	icado:			
Heces Freso	cas:						
Resultados		M					
	eteristicas stencia:	Macroscóp		Restos Aliment.	Otwasi		
-		Sangre: □ SI	Moco: □ SI	SI SI	Otros:		
U							
Dura							
2. Exam Director	nen Micro	oscopico					
Kato:	•						
Willis:							
Rugai:							
rtugui.							

Placa de agar:	
Preservado: (Formol 10%)	
1. Método de Lutz (Fecha):	
2. Técnica de Formol-Éter (fecha):	
Realizado nor:	

Realizado por:

HOJAS DE METADATOS

Hoja de Metadatos para Tesis y Trabajos de Ascenso – 1/6

	UTILIDAD) DE	UNA	MODIFICACIÓN	DE L	A TÉCNICA	DE
Título	WILLIS	EN	EL	DIAGNÓSTICO	DE	HUEVOS	DE
	GEOHELM	IINTO	OS				
Subtítulo							

Autor(es)

Apellidos y Nombres	Código ORCID / e-mail		
Guerrero Guerrero Kelix Nazaret	ORCID		
Guerrero Guerrero Kenx Nazaret	e-mail:	kelixguerrero@gmail.com	
Guerrero García María Eugenia	ORCID		
Guerrero Garcia Maria Eugenia	e-mail:	ggmaru02@gmail.com	

Palabras o frases claves:

Geohelmintos	
Diagnóstico	
Solución Salina Saturada	
Ascaris lumbricoides	

Hoja de Metadatos para Tesis y Trabajos de Ascenso – 2/6

Área o Línea de investigación:

Área	Subáreas
Dpto. de Parasitología y Microbiología	Parasitología
Línea de Investigación:	

Resumen (abstract):

Se realizó un estudio para determinar la utilidad de una modificación de la técnica de Willis en el diagnóstico de huevos de helmintos comparándola con la técnica de Willis tradicional. En julio de 2023 fueron evaluadas las heces de 136 habitantes del barrio Moreno de Mendoza y 100 del barrio Cuyuní de Ciudad Bolívar. Se obtuvo una prevalencia de helmintos intestinales de 5,9% (8,8% en Moreno de Mendoza y 2% en Cuyuní). El helminto de mayor prevalencia fue Ascaris lumbricoides con 11 casos (10 en Moreno de Mendoza y 1 en Cuyuní). De estas 14 muestras fecales positivas, 12 estaban en cantidad suficiente que permitió realizar las dos modalidades de la técnica de Willis (10 en Moreno de Mendoza y 2 en Cuyuní). De las 12 muestras positivas en Kato y sometidas a la técnica de Willis, 11 estaban positivas en la modalidad tradicional y 10 en la modalidad cubana, para una frecuencia de helmintos de 91,7% y 83,3%, respectivamente. De los 9 casos de A. lumbricoides en el Kato, Willis tradicional solo dejo de diagnosticar uno, mientras que la modificación cubana no diagnóstico dos casos. Respecto a Trichuris trichiura, en ambas modalidades de Willis se perdió un caso (no identificado). Finalmente, los 2 casos de ancylostomideos se identificaron en ambas modalidades. Respecto a la morfología de los huevos observados, de estos helmintos no hubo diferencia entre las dos modalidades, ya que la anatomía característica se mantuvo en ambos casos. En conclusión, la modificación cubana de la técnica de Willis es útil para el diagnóstico de huevos de helmintos, siendo sus resultados comparables a los obtenidos con la técnica de Willis tradicional, tanto de manera global como por taxones de helmintos.

Hoja de Metadatos para Tesis y Trabajos de Ascenso – 3/6

Contribuidores:

Apellidos y Nombres	ROL	/ Códig	o ORCI	D / e-n	nail
	ROL	CA	AS	TU(x)	JU
Dr. Rodolfo Devera	ORCID				
	e-mail	svn	nguayana	@gmail.	com
	e-mail				
	ROL	CA	AS	TU	JU(x)
Lcda. Ytalia Blanco	ORCID				
	e-mail	ytali	ablanco(@hotmail	.com
	e-mail				
	ROL	CA	AS	TU	JU(x)
Dra. Ixora Requena	ORCID				
	e-mail	ixoı	arequena	a@gmail.	com
	e-mail				

Fecha de discusión y aprobación:

2024	10	08
Año	Mes	Día

Lenguaje: español

Hoja de Metadatos para Tesis y Trabajos de Ascenso – 4/6

Archivo(s):
Nombre de archivo
Utilidad de una mod de la técnica de Willis en el dx de huevos de geohelmintos
Alcance:
Espacial:
Barrio Moreno de Mendoza y Barrio Cuyuní "Angostura del Orinoco", Ciudad Bolívar, estado Bolívar
Temporal:
Julio del 2023
Título o Grado asociado con el trabajo:
Médico Cirujano
Nivel Asociado con el Trabajo:
Pregrado
Área de Estudio:
Dpto. de Medicina
Institución(es) que garantiza(n) el Título o grado:
Universidad de Oriente

CU Nº 0975

Cumaná, 0 4 AGO 2009

Ciudadano
Prof. JESÚS MARTÍNEZ YÉPEZ
Vicerrector Académico
Universidad de Oriente
Su Despacho

Estimado Profesor Martínez:

Cumplo en notificarle que el Consejo Universitario, en Reunión Ordinaria celebrada en Centro de Convenciones de Cantaura, los días 28 y 29 de julio de 2009, conoció el punto de agenda "SOLICITUD DE AUTORIZACIÓN PARA PUBLICAR TODA LA PRODUCCIÓN INTELECTUAL DE LA UNIVERSIDAD DE ORIENTE EN EL REPOSITORIO INSTITUCIONAL DE LA UDO, SEGÚN VRAC Nº 696/2009".

Leido el oficio SIBI – 139/2009 de fecha 09-07-2009, suscrita por el Dr. Abul K. Bashirullah, Director de Bibliotecas, este Cuerpo Colegiado decidió, por unanimidad, autorizar la publicación de toda la producción intelectual de la Universidad de Oriente en el Repositorio en cuestión.

SISTEMA DE BIBLIOTECA

Cordialmente,

C.C. Rectora, Vicerrectora Administrativa, Decanos de los Núcleos, Coordinador General de Administración, Director de Personal, Dirección de Finanzas, Dirección de Presupuesto, Contraloría Interna, Consultoría Jurídica, Director de Bibliotecas, Dirección de Publicaciones, Dirección de Computación, Coordinación de Teleinformática, Coordinación General de Postgrado.

JABC/YGC/maruja

Hoja de Metadatos para Tesis y Trabajos de Ascenso – 6/6

De acuerdo al artículo 41 del reglamento de trabajos de grado (Vigente a partir del II Semestre 2009, según comunicación CU-034-2009)

"Los Trabajos de grado son exclusiva propiedad de la Universidad de Oriente y solo podrán ser utilizadas a otros fines con el consentimiento del consejo de núcleo respectivo, quien lo participará al Consejo Universitario" para su autorización.

AUTOR(ES)

Br. GUERRERO GUERRERO KELIX NAZARET CI.20100234 AUTOR Kylx Nozalet Guerrero

Br. GUERRERO GARCIA MARÍA EUGENIA C.I.23705185 AUTOR MONTO EUGARA GUENTA

JURADOS

TUTOR: Prof. RODOLFO DEVERA

EMAIL: 5 Mpmygn Dgmm om

JURADO Prof. YTALJA BLANCO

EMAIL: ytalinyanitals @ gmail com

JURADO Prof. IXORA REQUENA C.I.N. 10.062.328

EMAIL: 1x012 regum (gmail con

P. COMISIÓN DE TRABAJO DE GRADO

DEL PUEBLO VENIMOS / HACIA EL PUEBLO VAMOS

A Méndez c/c Columbo Silva- Sector Barrio Ajuro- Edificio de Escuela Ciencias de la Salud-Planta Baja- Ciudad Bolivar- Edo. Bolívar- Venezuela.

Teléfono (0285) 6324976