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FROM IRREDUNDANCE TO ANNIHILATION:
A BRIEF OVERVIEW OF SOME

DOMINATION PARAMETERS OF  GRAPHS

INTRODUCTION

The idea of domination in a graph has existed far before
the word of domination was precisely defined. For instance,
the combinatorial problems, famous in the last century, of
finding on a p x p chessboard the maximum number of
pairwise non-attacking queens, the minimum number of
queens sufficient to cover the chessboard and the minimum
number of pairwise non-attacking queens sufficient to cover
the chessboard are typically problems of independence, domi-
nation and independent domination. In 1958, Berge intro-
duced the concept of dominating set under the term of ex-
ternal stable set (Berge 1962). In 1962, Ore used for the
first time the word domination (Ore 1962). Since this time,
a large amount of work has been done on the subject and a
lot of related concepts have been introduced and studied
(see the recent and very complete book Haynes et al. (1998
a) and its bibliography containing more than 1220 titles).

We recall here the definition and a few properties of
the most usual domination related parameters, namely the
parameters of domination, independence and irredundance,
and introduce the more recent concepts of perfect neigh-
borhood sets, R-annihilated irredundant sets and R-anni-
hilated sets.

First we specify our terminology. We consider only
undirected simple graphs G = (V, E) (in directed graphs
the problems of domination are quite different since in par-
ticular, an independent dominating set, called kernel, does
not always exist). We denote by n the order |V| of G, by
N(x) (resp. N[x] = N(x) È {x}) the neighborhood (resp.
closed neighborhood) of a vertex x, by d(x) = |N(x) | the
degree of x and by δ (resp. ∆) the minimum (resp. maxi-
mum) degree of G.  For X V, N(X) = Èx∈ X  N(x), N[X]
=Èx ∈ X N[x] = X È N(X) and if y ∈  V, NX (y) = N(y) Ç X.
The subgraph G[X] induced in G by a subset X Í V is
often simply denoted by X.

The X-private neighborhood of a vertex x ∈  X is the
set pnX (x) = N [x] - N [X – {r}] and its elements are called
the X-private neighbors of x. The X-private neighbors of x
are thus x itself if x is isolated in X, and the external pri-
vate neighbors which are the vertices of V – X adjacent to
x but to no other vertex of X. The vertex x is irredundant
in X if pnX (x) ≠ φ, redundant otherwise

To each subset X Í V we associate the partition X È
YX È ZX È BX È CX È RX of V where ZX (resp. YX) is the
set of isolated (resp. non isolated) vertices of X, BX is the
set of vertices of V – X with exactly one neighbor in X
(that is the set of the external X-private neighbors of the
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vertices of X), CX is the set of the vertices of V with at least
two neighbors in X, and Rx = V – N[X] is the set of the
vertices of V – X with no neighbors in X. With this nota-
tion, X is independent if and only if YX = φ.

DOMINATION,  INDEPENDENCE
AND  IRREDUNDANCE

A subset X of V is a dominating set of G if every vertex
of V – X has at least one neighbor in X, in other terms, if
N[X] = V or equivalently, if RX 

= φ. More generally, if X and
Y are subsets of V, we say that X dominates Y if Y ⊆  N[X].
Dominating sets always exist since V itself dominates G and
the interesting notion is this one of minimal dominating sets
which are dominating sets X such that X – {x} is not domi-
nating for all x in X. This fundamental concept of domina-
tion has been extended in different directions.

One can ask the dominating set to fulfil another condi-
tion and consider for instance connected dominating sets (X
is connected), total dominating sets (ZX = φ), independent
dominating sets 

),( φ=XZ

 dominating cliques, dominating
cycles, a.s.o. Note that in a connected graph G, indepen-
dent, total or connected dominating sets always exist but
that this is not true for dominating cliques or cycles. Hence
the main subject of study of the second kind of dominating
sets is their existence, while it is their size for the first kind.

One can also consider different ways for a set X to domi-
nate G. For instance, X is a k-covering  (Meir and Moon
1975) if every vertex of V – X is at distance at most k from
some vertex of X, and a k-dominating set (Fink and Jacobson
1985) if each vertex of V – X has at least k neighbors in X.

Let us come back to the notion of independent domi-
nating set. It is easy to see that an independent set X is
maximal under inclusion (that is X È {x} is not indepen-
dent for all x in V – X) if and only if X dominates G, and
that in this case, X is a minimal dominating set of G. The
minimum and maximum cardinalities of a maximal inde-
pendent set of G are respectively denoted by i(G) and β (G).
The minimum and maximum cardinalities of a minimal
dominating set of G are respectively denoted by γ (G) and
Γ(G) (we can omit G when there is no ambiguity). From
the above characterization of maximal independent sets,
every graph G satisfies γ (G) ≤ i(G) ≤ β (G) ≤ Γ(G).

For instance, let V(G) = {x, y, x1, x2, x3, y1,y2, y3, z1, z2,z3}
and E(G) = {xy} ∪ {xxi,yyi,yzi, yi, zi} 31 ≤≤ i ∪ {y1 y2, y2 y3,
y3 y1, z1z2, z2 z3, z3z1}. Then {x,y} and {x1,x2,x3, y1, y2 y3} are
respectively minimum and maximum minimal dominating
sets, {x, y1, z2} and {x1, x2, x3, y1, z2} are respectively mini-
mum and maximum maximal independent sets, and thus

1≤ ir (G)≤γ (G)≤ i(G)≤ β(G)≤Γ(G)≤ IR(G) (2)

Since each subset of V containing exactly one vertex is
irredundant, we are lead to consider for irredundant sets the
same problem as before for independent and for dominating
sets: how characterize the property for an irredundant set
to be maximal?  Given a set X Í V, we say that a vertex y
of V – X annihilates a vertex x of X if φ  ≠ pnX(x) Í N [y].
This means that x has X-private neighbors but no (X È {y})-
private neighbors. Therefore x is irredundant in X but
redundant in X È {y}. The set X is annihilated by Y Í V if
each vertex y of Y annihilates some vertex of  X. Consider
for instance the graph H given by V(H) = {x,y,x',y',x'',y'',z,t}
and E(H) = {xy,xx',x'x'',yy',y'y'',zx,zy,zt,tx'}. The set X =
{x,y} is irredundant since pnX (x) = {x'} ≠ φ  and pnx ( y) =
{y’} ≠ φ.. The set X' = X ∪  {z} is also irredundant since
pnX' (x) = {x'}, pnx' (y) = {y’} and pnX' (z) = {t}, and thus the
irredundant set X is not maximal.  However, the irredundant
set X' is maximal.  With the notation given in the introduction,
RX = {x'', y'', t} and N [RX] = {x'' y'', t, x', y', z}, RX' = {x'',
y''} and N [RX'] = {x'',y'',x',y'}. The irredundant set X is not
maximal because, the vertex z of N [RX] annihilating no vertex
of X, the set X È {z} is still irredundant. But every vertex of
N[RX'] annihilates some vertex of X' (x' and x'' annihilate x,
y' and y'' annihilate y). This is a general result and it is proved
in Cockayne et al. (1997) that the irredundant set X is
maximal if and only if it is N [R]-annihilated.

From irredundance to annihilation...

γ (G) = 2, i(G) = 3, β (G) = 5, Γ(G) = 6.
Can we find a characterization of minimal dominating

sets similar to the characterization of maximal indepen-
dent sets? In the previous example, the dominating set X =
{xl ,x2,x3,yl ,y2,y3} is minimal because each xi being isolated
in X, X – {xi} does not dominate xi, and each yi admitting
an X-external private neighbor zi, X – {yi} does not domi-
nate zi.  The reason of the minimality of X is thus that each
vertex of X is irredundant in X. A subset X of V is said to
be irredundant if each vertex of X is irredundant in X. It
is now easy to check that a dominating set X of G is mini-
mal if and only if it is irredundant. Moreover, if X is both
dominating and irredundant, then for all y in V – X, N[y] Í
N[X] and thus X È {y} is no more irredundant. This is the
definition of a maximal irredundant set. The minimum and
maximum cardinalities of a maximal irredundant set are
respectively denoted by ir (G) and IR(G). Therefore, we
get the following implications (1) and consequently the
inequality chain (2) which was first given in Cockayne
et al. (1978):

maximal

independent

independent
and

dominating

minimal

dominating

dominating
and

irredundant

maximal

irredundant
⇔ ⇔⇒ ⇒ (1)
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Before generalizing in the following two sections the
N[R]-annihilated irredundant sets, let us point out that a
lot of work has been done in relation to the six parameters
involved in (2). As the determination of each of them is
NP-complete, even in many restricted classes of graphs,
any piece of information about them is interesting. When
ir(G) = 1, that is when G has at least one universal vertex
dominating G, then γ (G) = i(G) = 1. When ir(G) ≥ 2, the
only other inequality holding for all G between the six pa-
rameters is γ (G) ≤ 2 ir (G) – 1 (Allan and Laskar 1978 a;
Bollobás and Cockayne 1979). Given any six integers mi
such that 2 ≤ m1 ≤ m2 ≤ m3 ≤ m4 ≤ m5 ≤ m6 and m2 ≤ 2m1 –
1, there exist graphs satisfying ir (G) = m1, γ (G) = m2 ,
i(G) = m3, β (G) = m4, Γ(G) = m5, IR(G) = m6 (Cockayne
and Mynhardt 1992). But if we restrict ourselves to par-
ticular classes of graphs, often defined by forbidden in-
duced subgraphs, we can have stronger relations between
the parameters. For instance, γ (G) = i(G) ≤ 3ir(G)/2 in
claw-free graphs, γ (G) ≤ 3ir(G)/2 in block graphs or β
(G) = Γ(G) = IR(G) in bipartite or chordal graphs (see e.g.
Allan and Laskar 1978 a; Cockayne et al. 1981; Faudree
et al. 1998; Favaron et al. 1998; Jacobson and Peters 1990;
Puech 1998 a; Puech 1998 b; Volkmann 1998; Zverovich
1998 ...). Also, many relations are known between these
parameters and the order and the minimum or maximum
degree of the graph. For instance, for all G, ir(G) ≥ 2n/3∆,
n/(∆ + 1) ≤ γ (G) ≤ n/2 (if G has no isolated vertex), i(G)
≤ n – ∆, IR(G) ≤ n – δ, i(G) ≤  n + 2δ – ,2 δn   i(G) +

IR(G) ≤ 2n + 2δ – δn2  (see e.g. Cockayne and Mynhardt

1997; Favaron 1988; Ore 1962; Sun and Wang 1999 ...).
Another direction which raised up many results is the study
of the behavior of these parameters under the deletion of a
vertex or an edge, or the addition of an edge. On all these
subjects, and other ones, the reader is refered to the bibli-
ography of Haynes et al. (1998 a).

To finish this section, let us give as an example a table
showing what is presently known on the value of the six
previous parameters in chessboard graphs. The problems
mentioned in the introduction and related to the posi-
tions of queens on a chessboard have been formalized in
terms of domination, generalized to other chessboards
and other domination parameters, and are vastely stud-
ied. The vertices of a chessboard graph are the p2 squares
of a p x p chessboard. For a given piece, the neighbors of
a vertex x are the squares that such a piece placed in x
can reach in one move. There are thus six chessboard
graphs corresponding to the six chessmen (with an ex-
ception for the pawn which is replaced, because of its
irregular moves, by a "pseudo-pawn" whose moves raise
a grid Pp  Pp). For each square of the table, we indicate
what is known, namely the exact value of the correspond-
ing parameter, or its order of magnitude when p → ∞, or
bounds. For the most recent results, a reference is given.
Note that when the general value of a parameter is not
known, there often exist results for small values of p (see
Haynes et al. 1998 b, Chapter 6). And that some results
also exist on ir )( pN , γ )( pN  and i )( pN , but they are
not yet definitive.
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PERFECT  NEIGHBORHOOD SETS
AND R–ANNIHILATED
IRREDUNDANT SETS

Recently, perfect neighborhood sets were defined in
Fricke et al. (1999). Given X Í V, a vertex v ∈  V is said to
be X-perfect if |N[v]Ç X | = 1, that is if v ∈  ZX È BX. The
set X is a perfect neighborhood set if each vertex of V is X-
perfect or has an X-perfect neighbor, in other terms, if ZX
∪  BX is a dominating set of G. For instance, every maxi-
mal independent set is a perfect neighborhood set.  The
minimum and maximum cardinalities of a perfect neigh-
borhood set are respectively denoted by θ (G) and Θ(G).
Similarly, the minimum cardinality of an independent per-
fect neighborhood set is denoted by θ  i (G) and clearly,
θ  i (G) ≥ θ (G). Fricke et al. (1999) proved that the two
new parameters satisfy θ (G) ≤ γ (G) and Θ (G)  = Γ(G),
and they conjectured that θ  (G) ≤ ir (G) for all G. In
Favaron and Puech (1999), a family of counter-examples
to this conjecture is given, showing that on the contrary,
the difference θ (G) – ir (G) can be arbitrarily large (the
smallest graph of this family has nearly 2 millions verti-
ces). However, the inequality θ  (G) ≤ ir (G) holds in sev-
eral families of graphs, among them trees and claw-free
graphs (Cockayne et al. 1998; Favaron and Puech 1999).

A natural way to prove θ (G) ≤ ir (G) for some graph
G is to start from a maximal irredundant set X with ir (G)
vertices and to construct from X a perfect neighborhood
set with at most |X| = ir (G) vertices. Applying this method
to claw-free graphs, we observed in Favaron and Puech
(1999) that we could get a stronger result. First because it
was possible to construct an independent perfect neigh-
borhood set of the good size, so that θi (G) ≤ ir (G). Sec-
ondly because we did not entirely use the property of the
irredundant set X to be maximal, that is N[R]-annihilated,
but only its weaker property to be R-annihilated. This ob-
servation lead us to introduce (Favaron and Puech 1999;
Cockayne et al. 1998 a) the concept of R-annihilated
irredundant sets (which we first called semi-maximal
irredundant sets) and to denote by rai (G) the minimum
cardinality of an R-annihilated irredundant set.  Since ev-
ery N[R]-annihilated set is R-annihilated, we clearly have
rai (G) ≤ ir (G) for all G. Hence our proof in Favaron and
Puech (1999) shows that θ (G) ≤ θi (G) ≤ rai(G) ≤ ir (G)
if G is claw-free.

The example of the graph H given in Section 2 can
help the reader to see the difference between N[R]–annihi-
lated irredundant sets and R-annihilated irredundant sets.
The irredundant set X = {x, y} is R–annihilated since RX =
{ x", y", t} and x" and t annihilate x, y" annihilates y. But X

is not N[R]–annihilated, and thus not maximal, since the
vertex z of N[Rx] annihilates nothing in X. However, we
saw that the irredundant set X' = {x, y, z} is N [R]–annihi-
lated since maximal. Since H has no universal vertex, rai(H)
> 1 and we can check that X' is a minimum maximal
irredundant set. Hence, rai(H) = 2 and ir(H) = 3.

Perfect neighborhood sets can also be related to the 2-
coverings and the 2-packings of G. Every perfect
neigbborhood set X is a 2-covering (see Section 2) since
every vertex of G is at distance at most 1 from BX ∪  ZX
and BX is dominated by X. Hence, if we denote by γ2  (G)
the minimum cardinality of a 2-covering, then γ2 (G) 

≤

q
(G). In the other direction, a k-packing, introduced in Meir
and Moon (1975), is a set of vertices such that any two of
them are at distance more than k in G (in particular a 1-
packing is an independent set). Every maximal 2-packing
is an independent 2-covering satisfying N(X) = BX, and
thus is an independent perfect neighborhood set. There-
fore, if we denote by ρL (G) and ρ (G) the minimum and
maximum cardinalities of a maximal 2-packing, we have

iθ

(G) 

≤

 ρL (G) and thus 

2γ

(G) 

≤

θ (G) 

≤

 

Lρ

(G) 

≤Lρ

(G) 

≤

 

ρ

(G) for all G. Moreover, it is proved in Meir
and Moon (1975) that 

ρ

(G) 

≤γ

(G).

N[R] –ANNIHILATED SETS
AND R–ANNIHILATED SETS

After having reduced the class of the irredundant sets
by considering the subclasses of the N[R]-annihilated
irredundant sets and of the R-annihilated irredundant sets,
we now enlarge the new classes by considering the N[R]-
annihilated sets and the R-annihilated sets which are not
necessarily irredundant.

We saw in Section 2 that an irredundant set is maximal
if and only if it is N[R]-annihilated, and it is shown in
Cockayne et al (1997) that in this case, it is a minimal
(under inclusion) N[R]-annihilated set. Because the N[R]–
annihilated sets were first called external redundant
(Cockayne et al 1997; Cockayne et al. 1997), the mini-
mum and maximum cardinalities of a minimal N[R]-anni-
hilated set are respectively denoted by er(G) and ER(G).
Hence, the sequences of implications (1) and of inequali-
ties (2) can be enlarged as follows:

).()()()()()()()(1 GERGIRGGGiGGirGer ≤≤Γ≤≤≤≤≤≤ βγ

Maximal

iredundant

irredundant
and

N[R]–annihilated

minimal

N[R]–annihilated
⇔ ⇒

and

From irredundance to annihilation...
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To conclude, it has been observed in Cockayne et al.
(1997) and in Cockayne et al. (1998 b) that several known
lower bounds on ir(G) still hold, with exactly the same
proof, for er(G) or for ra(G). Therefore, in some circum-
stances and for some problems, the concept of irredundance
be-comes redundant and can be replaced by a concept of
annihilation.
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From irredundance to annihilatiion:


