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RESUMEN

Durantelos Ultimos treinta afios, el concepto de dominacion en grafos halevantado un interésimpresionante. Unabibliografia
reciente sobre el topico contiene mas de 1200 referenciasy el ndmero de definiciones nuevas esté creciendo continuamente. Envez de
intentar dar un catdl ogo de todas ell as, examinamos las nociones més clésicas e importantes (tal es como dominacion independiente,
dominacion irredundante, &-cubrimientos, conjuntos k-dominantes, conjuntosVecindad Perfecta, ...) y a gunos delosresultados mas

significativos.
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ABSTRACT

During thelast thirty years, the concept of domination in graphs has generated an impressive interest. A recent bibliography on
the subject contains more than 1200 references and the number of new definitionsis continually increasing. Rather than trying to give
acatalogue of al of them, we survey the most classical and important notions (as independent domination, irredundant domination,
k-coverings, k-dominating sets, Perfect Neighborhood sets, ...) and some of the most significant results.

KEey worbs: Graph theory, Domination.

INTRODUCTION

Theideaof dominationin agraph hasexisted far before
theword of domination was precisely defined. For instance,
the combinatorial problems, famous in the last century, of
finding on a p x p chessboard the maximum number of
pairwise non-attacking queens, the minimum number of
queens sufficient to cover the chessboard and the minimum
number of pai rwise non-attacking queens sufficient to cover
thechessboard aretypicdly problemsof independence, domi-
nation and independent domination. In 1958, Berge intro-
duced the concept of dominating set under the term of ex-
ternal stable set (Berge 1962). In 1962, Ore used for the
first time the word domination (Ore 1962). Sincethistime,
alarge amount of work has been done on the subject and a
lot of related concepts have been introduced and studied
(seetherecent and very complete book Hayneset al. (1998
a) and its bibliography containing more than 1220 titles).

We recall here the definition and a few properties of
themost usual domination related parameters, namely the
parameters of domination, independence and irredundance,
and introduce the more recent concepts of perfect neigh-
borhood sets, R-annihilated irredundant sets and R-anni-
hilated sets.

* Conferenciapor invitacion, dictadaenlas V11 Jornadas de Teoriade
Grafos, Cumané 1998.
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First we specify our terminology. We consider only
undirected simple graphs G = (¥, E) (in directed graphs
the problems of domination are quitedifferent sincein par-
ticular, anindependent dominating set, called kernel, does
not always exist). We denote by n the order |V'] of G by
N(x) (resp. N[x] = N(x) E {x}) the neighborhood (resp.
closed neighborhood) of a vertex x, by d(x) = [N(x) | the
degree of x and by § (resp. A) the minimum (resp. maxi-
mum) degree of G For X ¥/ N(X) = E_, N(x), N[X]
=E, ., Mx] =XE N(X)andif y OV, N, (y) = N() G X.
The subgraph G[X] induced in G by asubset X| V'is
often simply denoted by X

The X-private neighborhood of avertex x 0 X isthe
setpn, (x) =N [x] - N [X—{r}] anditselementsare called
the X-private neighbors of x. The X-private neighbors of x
arethusx itself if x isisolated in X, and the external pri-
vate neighbors which arethe vertices of V- X adjacent to
x but to no other vertex of X. The vertex x is irredundant
inXif pn, (x) # @ redundant otherwise

To each subset X‘i V we associate the partition X E
Y, E .ZX EB,EC E RX. of V' where ZX (resp. Y,) !sthe
set of isolated (resp. non isolated) vertices of X, B, isthe
set of vertices of ' — X with exactly one neighbor in X
(that is the set of the external X-private neighbors of the



(ZX= #),
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verticesof X), C, istheset of the verticesof /' withat least
two neighborsin X, and R_= V' — N[X] is the set of the
vertices of V— X with no neighbors in X. With this nota-
tion, X'isindependent if andonly if Y, = ¢

DOMINATION, INDEPENDENCE
AND IRREDUNDANCE

A subset X of Visadominating set of G if every vertex
of V- X has at least one neighbor in X in other terms, if
NIX] = Vorequivaently, if R, = @ Moregeneraly, if Xand
Y are subsets of 7, we say that X dominates Y if Y [0 N[X].
Dominating setsawaysexist since Vitself dominates G and
theinteresting notion isthisone of minimal dominating sets
which are dominating sets X such that X —{x} isnot domi-
nating for all x in X. Thisfundamental concept of domina-
tion has been extended in different directions.

One can ask the dominating set to fulfil another condi-
tion and consider for instance connected dominating sets (X
is connected), total dominating sets (Z, = ¢, independent

dominating sets dominating cliques, dominating

cycles, a.s.0. Note that in a connected graph G, indepen-
dent, total or connected dominating sets always exist but
that thisis not true for dominating cliques or cycles. Hence
the main subject of study of the second kind of dominating
setsistheir existence, whileitistheir sizefor thefirst kind.

One can dso consider different waysfor aset X'to domi-
nate G. For instance, X is a k-covering (Meir and Moon
1975) if every vertex of V- X isat distance at most k£ from
somevertex of X, and ak-dominating set (Fink and Jacobson
1985) if each vertex of V' — X hasat least £ neighborsin X.

Let us come back to the notion of independent domi-
nating set. It is easy to see that an independent set X is
maximal under inclusion (that isX E {x} isnot indepen-
dent for al x in V- X) if and only if X dominates G, and
that in this case, X isaminimal dominating set of G. The
minimum and maximum cardinalities of amaximal inde-
pendent set of G arerespectively denoted by i(G) and 3 (G).
The minimum and maximum cardinalities of a minimal
dominating set of G arerespectively denoted by y (G) and
I'(G) (we can omit G when there is no ambiguity). From
the above characterization of maximal independent sets,
every graph G satisfies y (G) < i(G) < B(G) < T(G).

Forinstance, let V(G) ={x, y, x,, X,, X5, v,V Vs 20 ZZ5}
and E(G) = {xp} U {xx,)v,pz, 3, z}cics O {y 0,9, ¥y

VaVir 22 2,25 22,3 - Then{x,y} and {x,x,x,, v,, v,V.} ae
respectively minimum and maximum minimal dominating
sats, {x, y,, z,} and {x,, x,, x,, v,, z,} arerespectively mini-
mum and maximum maximal independent sets, and thus
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y(G)=2,i(G)=3,B(G)=5T(G) =6.

Canwefind acharacterization of minimal dominating
sets similar to the characterization of maximal indepen-
dent sets?1n the previous example, the dominating set X =
{x,.%,%,,,y,,v,} isminimal because each x, being isolated
inX, X—{x} doesnot dominate x, and each y, admitting
an X-external private neighbor z, X —{y} does not domi-
natez, Thereasonof theminimality of Xisthusthat each
vertex of X isirredundant in X. A subset X of Vissaid to
be irredundant if each vertex of X isirredundant in X. It
isnow easy to check that adominating set X of G ismini-
mal if and only if it isirredundant. Moreover, if Xisboth
dominating and irredundant, thenfor all y in - X, N[y] |
N[X] and thus X E {y} isno moreirredundant. Thisisthe
definition of amaximal irredundant set. The minimum and
maximum cardinalities of a maximal irredundant set are
respectively denoted by ir (G) and IR(G). Therefore, we
get the following implications (1) and consequently the
inequality chain (2) which wasfirst given in Cockayne
et al. (1978):

maximal independent ~ minimal dominating  maximal
- ad O - and O (D]
independent  dominating dominating irredundant irredundant

1< ir (G)<y (G)< i(G)< B(G)<T (GI< IR(G)  (2)

Since each subset of V' containing exactly onevertex is
irredundant, we arelead to consider for irredundant setsthe
same problem asbeforefor independent and for dominating
sets:. how characterize the property for an irredundant set
to be maximal? Givenaset X | ¥, we say that avertex y
of V' —X annihilates avertex x of X'if ¢ # pn (x) i‘N[y].
Thismeansthat x has X-private neighborsbut no (YE{y})-
private neighbors. Therefore x is irredundant in X but
redundant in X E {y}. The set X is annihilated by Y1 Vif
each vertex y of Y annihilates some vertex of X. Consider
for instancethegraph H givenby V(H) = {x,yx"y'x"y"z 1}
and E(H) = {xyxx'xx"yv'y'y"zx,zyzt,tx"}. The set X =
{x.y} isirredundant since pn, (x) = {x} # @ and pn_(y) =
{r} #q@. Thesat X'= X 0{z} isaso irredundant since
pn, () ={x%,pn.(») ={y} andpn, (z) = {7}, and thusthe
irredundant set X isnot maximal. However, theirredundant
st X'ismaximal. With thenotation givenin theintroduction,
R, ={x"y" gandN[R]={x"y" t,x"y, 2z}, R, ={x",
y"tandN[R, ] ={x"y"x'y}. Theirredundant set X'is not
maximal because thevertexzof NV [R,] annihilating no vertex
of X, theset XE{z} isdtill irredundant. But every vertex of
MR, ] annihilates some vertex of X" (x"and x" annihilatex,
y'andy"annihilatey). Thisisagenera result anditisproved
in Cockayne et al. (1997) that the irredundant set X is
maximal if and only if itisN[R]-annihilated.
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Before generalizing in the following two sections the
N[R]-annihilated irredundant sets, let us point out that a
lot of work hasbeen donein relation to the six parameters
involved in (2). As the determination of each of them is
NP-complete, even in many restricted classes of graphs,
any piece of information about them isinteresting. When
ir(G) =1, that iswhen G has at |east one universal vertex
dominating G, then y(G) = i(G) = 1. When ir(G) = 2, the
only other inequality holding for all G between the six pa-
rametersis y(G) < 2ir (G) — 1 (Allan and Laskar 1978 &
Bollobas and Cockayne 1979). Given any six integers m,
suchthat 2<m, <m,<m,<m,<m <m andm,<2m, —
1, there exist graphs satisfying ir (G) = m,, y(G) = m,,
i(G) = my B(G) =m, ['(G) =m, IR(G) = m, (Cockayne
and Mynhardt 1992). But if we restrict ourselves to par-
ticular classes of graphs, often defined by forbidden in-
duced subgraphs, we can have stronger relations between
the parameters. For instance, y(G) = i(G) < 3ir(G)/2 in
claw-free graphs, y(G) < 3ir(G)/2 in block graphs or 8
(G) =T (G) = IR(G) inbipartite or chordal graphs (seee.g.
Allan and Laskar 1978 a; Cockayne et al. 1981; Faudree
et al. 1998; Favaron et al. 1998; Jacobson and Peters 1990;
Puech 1998 & Puech 1998 b; Volkmann 1998; Zverovich
1998 ...). Also, many relations are known between these
parameters and the order and the minimum or maximum
degree of the graph. For instance, for all G, ir(G) = 2n/34,
nl(A + 1) < y(G) < n/2 (if G has no isolated vertex), i(G)

<n—NAIRG)<n—0iG)< n+25— 2/n5, i(G)+
IR(G)<2n+20—./2ns (seeeg. Cockayneand Mynhardt

1997; Favaron 1988; Ore 1962; Sun and Wang 1999 ...).
Another direction which raised up many resultsisthe study
of the behavior of these parameters under the deletion of a
vertex or an edge, or the addition of an edge. On al these
subjects, and other ones, the reader isrefered to the bibli-
ography of Haynes et a. (1998 a).

Tofinishthissection, let usgive asan exampleatable
showing what is presently known on the value of the six
previous parametersin chessboard graphs. The problems
mentioned in the introduction and related to the posi-
tions of queens on achessboard have been formalized in
terms of domination, generalized to other chessboards
and other domination parameters, and are vastely stud-
ied. The vertices of achesshoard graph arethe p* squares
of ap x p chessboard. For agiven piece, the neighbors of
avertex x are the squares that such a piece placed in x
can reach in one move. There are thus six chesshoard
graphs corresponding to the six chessmen (with an ex-
ception for the pawn which is replaced, because of its
irregular moves, by a"pseudo-pawn" whose movesraise
agrid Pp  Pp). For each square of thetable, weindicate
what isknown, namely the exact value of the correspond-
ing parameter, or its order of magnitudewhenp - o, or
bounds. For the most recent results, areferenceisgiven.
Note that when the general value of a parameter is not
known, there often exist resultsfor small values of p (see
Haynes et al. 1998 b, Chapter 6). And that some results
also exist on ir (Np), y(Np) and i (Np), but they are
not yet definitive.

ir

y i Jij r IR
-1
£ <y i< oW IR <
2 2
Op 3p
Queen < a +0(]) <r
(Burger et al. (Eisenstein »2 (Burger et al. Burger et al.
1997) et al. 1992) . 0 (p) 1997) 1997)
2 v v
2 —+0 —+0
. b2 b4 2 P2 3 100 )
King 3 3 rre
(Fava’on 2 (Favaron (Fa\/a‘on
et al. 1998) et al. 1998) et al. 1998)
Bp
Bishop p p 2p-2 2p-2 4p-14
Rp -4
Rook %
" =
Knight 2 2
2 2 2
p p L 2
Z 40 —+0 +0 (p) P
Gp : +0 (p) 5 (p) 5 pi pi 5
Grid 2 2
(Favaron and (Cockayne (Favaron and
Puech 1998) et al.1985) Puech 1998)
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PERFECT NEIGHBORHOOD SETS
AND R-ANNIHILATED
IRREDUNDANT SETS

Recently, perfect neighborhood sets were defined in
Frickeet al. (1999). Given X | ¥, avertex v 0 Vissaid to
be X-perfect if IN[v]C X [=1, thatisif v O Z, EBX. The
set Xisaperfect neighborhood set if each vertex of VisX-
perfect or has an X-perfect neighbor, in other terms, if Z,
0 B, isadominating set of G. For instance, every maxi-
mal independent set is a perfect neighborhood set. The
minimum and maximum cardinalities of a perfect neigh-
borhood set are respectively denoted by 6 (G) and O(G).
Similarly, the minimum cardinality of anindependent per-
fect neighborhood set is denoted by 6, (G) and clearly,
6 . (G) 2 6(G). Frickeet al. (1999) proved that the two
new parameters satisfy 8 (G) < y(G) and © (G) =T(G),
and they conjectured that 8 (G) < ir (G) for adl G. In
Favaron and Puech (1999), afamily of counter-examples
to this conjecture is given, showing that on the contrary,
the difference 0 (G) — ir (G) can be arbitrarily large (the
smallest graph of this family has nearly 2 millions verti-
ces). However, theinequality 8 (G) <ir (G) holdsin sev-
eral families of graphs, among them trees and claw-free
graphs (Cockayne et al. 1998; Favaron and Puech 1999).

A natural way to prove 8 (G) < ir (G) for some graph

# o/(G) <ir(G) 9 }(Q) SALIrop1gRax(Da ingsjungantset X with ir (G)

vertices and to construct from X a perfect neighborhood
set with at most |[X] = ir (G) vertices. Applying thismethod
to claw-free graphs, we observed in Favaron and Puech
(1999) that we could get astronger result. First becauseit
was possible to construct an independent perfect neigh-
borhood set of the good size, so that 6,(G) < ir (G). Sec-
ondly because we did not entirely use the property of the
irredundant set X to be maximal, that is N[R]-annihilated,
but only its weaker property to be R-annihilated. This ob-
servation lead us to introduce (Favaron and Puech 1999;
Cockayne et al. 1998 a) the concept of R-annihilated
irredundant sets (which we first called semi-maximal
irredundant sets) and to denote by rai (G) the minimum
cardinality of an R-annihilated irredundant set. Since ev-
ery N[R]-annihilated set is R-annihilated, we clearly have
rai (G) <ir (G) for al G. Hence our proof in Favaron and
Puech (1999) showsthat 6 (G) < 6,(G) < rai(G) < ir (G)
if Gisclaw-free.

The example of the graph H given in Section 2 can
help the reader to seethe difference between N R]—annihi-
lated irredundant sets and R-annihilated irredundant sets.
Theirredundant set X' = {x, y} isR—annihilated sinceR, =
{x",y", £} andx"and ¢t annihilatex, y" annihilatesy. But X
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is not M R]—-annihilated, and thus not maximal, since the
vertex z of N[R ] annihilates nothing in X. However, we
saw that the irredundant set X’ = {x, y, z} isN [R]—-annihi-
lated since maximal. Since H hasno universal vertex, rai(H)
> 1 and we can check that X" is a minimum maximal
irredundant set. Hence, rai(H) = 2 and ir(H) = 3.

Perfect neighborhood sets can also berelated to the 2-
coverings and the 2-packings of G. Every perfect
neigbborhood set X is a 2-covering (see Section 2) since
every vertex of G is at distance at most 1 fromB, u Z,
and B, isdominated by X. Hence, if we denote by y, (G)
the minimum cardinality of a 2-covering, then y,(G) q
(G). Inthe other direction, a k-packing, introduced in Meir
and Moon (1975), isa set of vertices such that any two of
them are at distance more than k in G (in particular a 1-
packing isan independent set). Every maximal 2-packing
is an independent 2-covering satisfying N(X) = B,, and
thus is an independent perfect neighborhood set. There-
fore, if we denote by o (G) and p (G) the minimum and
maximum cardinalities of amaximal 2-packing, we have

(G) pL(G)andthus (G) 6(G) (G)

(@ (G) for @l G Moreover, it isproved in Meir

and Moon (1975) that  (G) (G).

N[R] -ANNIHILATED SETS
AND R-ANNIHILATED SETS

After having reduced the class of the irredundant sets
by considering the subclasses of the N[R]-annihilated
irredundant sets and of the R-annihilated irredundant sets,
we now enlarge the new classes by considering the V[ R]-
annihilated sets and the R-annihilated sets which are not
necessarily irredundant.

We saw in Section 2 that an irredundant set is maximal
if and only if it is N R]-annihilated, and it is shown in
Cockayne et al (1997) that in this case, it is a minimal
(under inclusion) N[R]-annihilated set. Becausethe N[R]—
annihilated sets were first called external redundant
(Cockayne et al 1997; Cockayne et al. 1997), the mini-
mum and maximum cardinalities of aminimal N[R]-anni-
hilated set are respectively denoted by er(G) and ER(G).
Hence, the sequences of implications (1) and of inequali-
ties (2) can be enlarged asfollows:

Maximal irredundant minimal
- and 0
iredundant N[R]—-annihilated N[R]-annihilated
and



ObILE FAVARON

R-annihilated sets, defined in Cockayne et a/ (1998 @),
both extend N[R]-annihilated sets and R-annihilated
irredundant sets. Therefore, their minimum cardinality
ra(G) satisfiesra(G) < er(G) and ra(G) < rai(G) for al G.
On the other hand, and as for the perfect neighborhood
sets, every R-annihilated set X'isa2-covering since every
vertexof B C, isat distance 1 from X, andif R, ,
every vertex v of Rx is at distance 2 from a vertex of X

which is annihilated by v. Hence, for every graph G we
have

Gathering these inequalities with these ones obtained
in Section 3 and relating the perfect neighborhood setsto
the 2-packings and the 2-coverings, we get for al G:

ra(G)S{Zf;g)}Sir(G)

0(GK6; (G)<pL(G)< p (G)

72(G) < <y(G).

In general the parameters of thetwo intermediary lines
cannot be ranged in a linear order (we saw in Section 2
that ¢ (G) can be smaller or greater than ir(G) and we
only know that p (G)  3ra(G)/2 (Cockayne et al. 1998
a), However, if Gisatreethen (G)= (G) by Meirand
Moon (1975) and it is proved in Cockayne et al. (1998 b)
that p£(G)  ra(G). Therefore, every tree T satifies:

Y (D)<0(1)<6(T)<p (T)<ra(T)<
<p((D)=y(D).

To conclude, it has been observed in Cockayne et al.
(1997) andin Cockayneet al. (1998 b) that several known
lower bounds on ir(G) till hold, with exactly the same
proof, for er(G) or for ra(G). Therefore, in some circum-
stancesand for some problems, the concept of irredundance
be-comes redundant and can be replaced by a concept of
annihilation.

<ir(T)
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