UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI ESCUELA DE INGENIERÍA Y CIENCIAS APLICADAS DEPARTAMENTO DE ELECTRICIDAD

"ESTUDIO Y COORDINACIÓN DE LAS PROTECCIONES DE DISTANCIA DE LA RED 115kV ASOCIADAS A LAS SUBESTACIONES PERTENECIENTES A CADAFE EN EL SISTEMA TRONCAL DE TRANSMISIÓN"

Realizado por:

FREDS ARGILIO AMUNDARAY CRUZ

Trabajo de Grado presentado ante la Universidad de Oriente como Requisito Parcial para optar al Título de:

Ingeniero Electricista

Barcelona, Agosto del 2009

UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI ESCUELA DE INGENIERÍA Y CIENCIAS APLICADAS DEPARTAMENTO DE ELECTRICIDAD

"ESTUDIO Y COORDINACIÓN DE LAS PROTECCIONES DE DISTANCIA DE LA RED 115kV ASOCIADAS A LAS SUBESTACIONES PERTENECIENTES A CADAFE EN EL SISTEMA TRONCAL DE TRANSMISIÓN"

REVISADO Y APROBADO POR:

Ing. Hernán Parra	Ing. Merly Camino
Asesor Académico	Asesor Industrial

Barcelona, Agosto del 2009

UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI ESCUELA DE INGENIERÍA Y CIENCIAS APLICADAS DEPARTAMENTO DE ELECTRICIDAD

"ESTUDIO Y COORDINACIÓN DE LAS PROTECCIONES DE DISTANCIA DE LA RED 115kV ASOCIADAS A LAS SUBESTACIONES PERTENECIENTES A CADAFE EN EL SISTEMA TRONCAL DE TRANSMISIÓN"

JURADO CALIFICADOR

Ing. Hernán	Parra
Asesor Acad	émico
Ing. Luís José Suárez	Ing. Santiago Escalante
Jurado Principal	Jurado Principal

Barcelona, Agosto del 2009

RESOLUCIÓN

De acuerdo al artículo 44 del reglamento de Trabajo de Grado de la Universidad de Oriente:

"Los Trabajos de Grado son propiedad de la Universidad de Oriente y solo podrán ser utilizados para otros fines con el consentimiento del consejo de Núcleo respectivo el cual participará al consejo Universitario"

DEDICATORIA

Al único merecedor de toda la honra, gloria, honor y adoración; el señor de lo imposible, el creador de todo, el que siempre ha estado conmigo aun sin merecerlo; a ti mi Dios Todopoderoso.

A mis padres, Flor y Pedro porque sé que en sus oraciones y pensamientos me tienen presente y quieren siempre lo mejor para mí.

A mis hermanos Aouda y Franzs los quiero mucho, para ustedes esta meta alcanzada.

Para mi gordita Maria Emilia gracias por tu apoyo y cariño hacia mí, para ti también este éxito alcanzado.

Para todas las personas que estuvieron involucrados directa e indirectamente en que este sueño se hiciera realidad.

AGRADECIMIENTOS

Nuevamente a Dios por estar presente en mi vida y permitirme obtener este título.

A mi mama por darme la vida, cuidarme y tenerme siempre presente en sus oraciones.

A mi papa por apoyarme y estar pendiente de mí aun de viejo.

A mis hermanos y mi tío por compartir esta vida conmigo y al apoyarme y darme los mejores consejos además de animarme y darme fortaleza.

A mi gordita por todo lo que ha hecho por mí y sigue haciendo.

A mi tutora industrial Merly Camino muchas gracias por tanto apoyo, animo y confianza además de conocimiento compartido y A mi tutor académico Hernán Parra por su asesoramiento y sus clases impartidas de protecciones me sirvieron de mucho.

A los muchachos del área de mediciones y protecciones de la empresa CADAFE por toda la colaboración prestada y al señor Simón Luna por regalarme un poco de su tiempo y adiestrarme en el simulador, mil gracias.

Quiero también agradecer a mis amigos de la universidad Ronald Quijada, Esteban Piñero, Miguel Barrios, Maria Custodia, Romer Cedeño, Jesús Rodríguez.

Al paisano y amigo Luís Suárez gracias por todos los consejos, clases impartidas, regaños y por la ayuda que me diste para culminar esta meta.

A los profesores del departamento de electricidad, el cual me dieron un poco de su conocimiento Enrique Serrano, Luís Parraguez, Santiago Escalante.

Y a todas las personas que de alguna u otra forma me ayudaron para alcanzar esta meta y se me pasa por alto, a uds mil gracias.

RESUMEN

El estudio desarrollado en este trabajo permitió realizar la Coordinación de Protecciones de distancia de las Líneas de 115kV del sistema de transmisión de CADAFE a nivel oriental. Para lograr el objetivo principal se depuro el mencionado sistema y se colocaron líneas y subestaciones nuevas que modificaban la topología de la red existente. También se realizó un levantamiento de la información referente a las protecciones de distancia existentes y sus ajustes actuales. Se realizo el cálculo de Cortocircuito del Sistema, utilizando el simulador DIgSILENT Powerfactory, para conocer los niveles de cortocircuito de la Red y las corrientes que contribuían a la falla producto de las fuentes intermedias, los cuales nos permitieron considerar las situaciones más adversas en cuanto a requerimientos de protección de líneas para realizar el ajuste a las protecciones de distancia, todo esto tomando como base las Normas IEEE C37.113, IEEE 242.

CONTENIDO

RESOLUCIÓN	iv
DEDICATORIA	v
AGRADECIMIENTOS	vi
RESUMEN	viii
CONTENIDO	ix
LISTA DE TABLAS	xvi
LISTA DE FIGURAS	xix
CAPÍTULO I	25
DESCRIPCIÓN GENERAL DE LA EMPRESA CADAFE	25
1.1 RESEÑA HISTÓRICA	25
1.2 CORPORACIÓN ELÉCTRICA NACIONAL	28
1.3 UBICACIÓN GEOGRÁFICA	29
1.4 MISIÓN	29
1.5 VISIÓN	29
1.6 VALORES	29
1.7 ESTRUCTURA ORGANIZACIONAL	30
1.8 PLANTEAMIENTO DEL PROBLEMA	31
1.9 OBJETIVOS	33
1.9.1 Objetivo General	33
1.9.2 Objetivos Específicos	33
CAPÍTULO 2	34
MARCO TEÓRICO	34
2.1 CORTOCIRCUITO	34
2.1.1 De origen eléctrico	34
2.1.2 De origen mecánico	34
2.1.3 Por falsa maniobra	34
2.1.4 De origen atmosférico	35

2.2 TIPOS	35
2.2.1 Cortocircuito tripolar o simétrico	35
2.2.2 Cortocircuito bipolar sin falla a tierra	36
2.2.3 Cortocircuito bipolar con falla a tierra	36
2.2.4 Cortocircuito unipolares a tierra	36
2.2.5 Cortocircuito de doble contacto a tierra	36
2.3 CONSECUENCIA	37
2.3.1 Calentamientos	37
2.3.2 Accidente en diyuntores	37
2.3.3 Esfuerzos electrodinámicos anormales	38
2.3.4 Caída de tensión elevada	38
2.4 SISTEMAS DE PROTECCIÓN	38
2.4.1 Características de un sistema de protección	39
2.5 PROTECCIONES DE DISTANCIA	39
2.5.1 Principios básicos de medición	40
2.5.1.1 Arranque	41
2.6 ESQUEMA DE PROTECCION DE DISTANCIA	41
2.6.1 Esquema de Subalcance Permitido (PUTT):	41
2.6.2 Esquema de Sobrealcance Permitido (POTT):	43
2.6.3 Esquema Aceleración de zona:	44
2.7 RELES DE PROTECCION	45
2.7.1 Transformadores de medida	45
2.7.1.1 Transformadores de potencial	45
2.7.1.2 Transformadores de corriente	47
2.7.2 Burden	47
2.7.3 Precisión	48
2.7.3.1 Núcleo para Medición	48
2.7.3.2 Núcleo para Protección:	49
2.8 RELÉS DE PROTECCIÓN SEGÚN LA TECNOLOGÍA:	49

2.8.1 Relé Electromecánico	49
2.8.1.1 Atracción electromagnética	49
2.8.1.2 Inducción Electromagnética	50
2.8.2 Relé Electrónico	52
2.8.3 Relé Numéricos	52
2.8.3.1 Funcionalidades de las protecciones numéricas	53
2.8.3.2 Protecciones de líneas de transmisión	54
2.9 RELÉS DE PROTECCIÓN SEGÚN SU FUNCIÓN	54
2.10 RELES DE DISTANCIA	55
2.10.1 Relé de distancia del tipo impedancia	55
2.10.2 Relé de distancia del tipo reactancia	59
2.10.3 Relé de distancia del tipo admitancia (mho)	61
2.10.4 Relé de distancia del tipo cuadrilateral	64
2.11 FACTORES QUE AFECTAN LA MEDICIÓN	65
2.11.1 Efecto de Fuente Intermedia	66
2.11.2 Resistencia de Falla	69
2.11.3 Longitud de la línea	71
CAPITULO 3	73
DESCRIPCION DEL SISTEMA DE TRANSION A NIVEL DE 115kV	73
3.1 UBICACIÓN GEOGRÁFICA	73
3.2 ESTADO SUCRE	74
3.2.1 S/E Casanay	74
3.2.2 S/E Guiria	75
3.2.3 S/E Irapa	75
3.2.4 S/E Carúpano	75
3.2.5 S/E Cariaco	75
3.2.6 S/E Manzanares	76
3.2.7 S/E Cumana III	76
3.2.8 S/E Tres Picos	76

3.2.9 S/E Santa Fe	76
3.2.10 S/E Cumana II	77
3.2.11 S/E Bordones	77
3.3 ESTADO ANZOÁTEGUI	77
3.3.1 S/E Guanta II	78
3.3.2 S/E Guanta I	79
3.3.3 S/E Guaraguao	79
3.3.4 S/E Paraíso	79
3.3.5 S/E Curaguaro	79
3.3.6 S/E Chuparin	80
3.3.7 S/E Parchitas	80
3.3.8 S/E Isleta	80
3.3.9 S/E Clarines	80
3.3.10 S/E Cuartel	81
3.3.11 S/E Lechería	81
3.3.12 S/E Barcelona	81
3.3.13 S/E Esfuerzo	81
3.3.14 S/E Tronconal V	82
3.3.15 S/E Barbacoa I	82
3.3.16 S/E Pilones	82
3.3.17 S/E Los Robles	82
3.3.18 S/E Alfredo Salazar	83
3.3.19 S/E Rebombeo I	83
3.3.20 S/E Rebombeo II	83
3.3.21 S/E Tigre II	84
3.3.22 S/E Tigre III	84
3.3.23 S/E Tigre I	84
3.4 ESTADO MONAGAS	85
3 4 1 S/F FI Indio	85

3.4.2 S/E Travieso	86
3.4.3 S/E Muscar	86
3.4.4 S/E Tejero	86
3.4.5 S/E Santa Bárbara	87
3.4.6 S/E Quiriquire	87
3.4.7 S/E Temblador	87
3.4.8 S/E Maturín	87
3.4.9 S/E La Paz	88
3.4.10 S/E Boulevard	88
3.4.11 S/E Jusepín	88
3.4.12 S/E Veladero	88
3.5 ESTADO DELTA AMACURO	89
3.5.1 S/E Tucupita	89
3.6 ESTADO BOLÍVAR	90
3.6.1 S/E Bolívar	90
3.6.2 S/E Farallones	91
3.7 CARACTERÍSTICAS DE LAS LÍNEAS DE TRANSMISIÓN	91
3.8 IMPEDANCIAS DE LAS LÍNEAS DE TRANSMISIÓN	93
3.9 CARGAS CONECTADAS A LAS BARRAS DE 115kV	95
3.10 CARACTERÍSTICAS DE LOS TRANSFORMADORES	96
3.10.1 Transformadores del estado Sucre	96
3.10.2 Transformadores del estado Anzoátegui	97
3.10.3 Transformadores del estado Monagas	99
3.10.4 Transformador del estado Delta Amacuro	100
3.10.5 Transformadores del estado Bolívar	100
CAPITULO 4	101
HERRAMIENTA COMPUTACIONAL DIGSILENT POWER FACTORY	101
4.1 MÓDULO DE CORTO CIRCUITO	101
4 1 1 Onciones Básicas	104

4.1.2 Opciones Avanzadas	105
4.1.2.1 Identificación de la Red	105
4.1.2.2 Temperatura del Conductor	106
4.1.2.3 Motores Asincrónicos	106
4.2 MÓDULO DE PROTECCIONES	106
4.2.1 Configuración básica de un transformador de corriente	110
4.2.2 Configuración básica de un transformador de voltaje	111
4.2.3 Crear una protección de distancia para líneas de transmisión .	113
4.3 DIAGRAMA DE DISTANCIA-TIEMPO	117
4.3.1 Creando un diagrama de distancia-tiempo:	117
4.3.2 Métodos para el cálculo del tiempo de disparo	122
4.3.2.1 Método de Barrido de Cortocircuito	122
4.3.2.2 Kilometrical	123
4.3.4 Ajustes de Cálculo de Cortocircuito	123
4.3.5 Unidad de X	124
4.3.6 Relé de Referencia	125
4.4 DIAGRAMA R-X	126
4.4.1 Creando un diagrama del relé (VisDraw):	127
4.4.2 Modificación de los Ajustes del Relé	130
4.4.3 Ajustes del diagrama del relé	131
4.4.3.1 Opciones Básicas:	131
4.4.3.2 Impedancias de Rama	132
CAPITULO 5	134
DESARROLLO	134
5.1 NIVELES DE CORTOCIRCUITOS ACTUALES	134
5.2 ACTUALES CRITERIOS DE AJUSTE	136
5.2.1 Líneas no Compensadas	136
5.2.2 Valores de las zonas actuales	138
5.3 CRITERIOS DE AJUSTES Y ESQUEMAS DE PROTECCIÓN	141

5.3.1 Nuevo criterio	145
5.3.1.1 Ajuste de la Zona 1	145
5.3.1.2 Ajuste de la Zona 2	151
5.3.1.3 Ajuste de la Zona 3	158
5.3.1.4 Alcance resistivo	159
5.3.1.5 Valores completo de las zonas propuestas	164
5.3.1.6 Valores seleccionados para las zonas propuestas	167
5.3.1.7 Calculo de las zonas con el nuevo criterio	171
5.3.1.8 Caso de estudio	176
5.4 PROPUESTA	177
CONCLUSIONES	178
RECOMENDACIONES	180
BIBLIOGRAFIA	181
ANEXO A;Error! Marcador ne	o definido.

LISTA DE TABLAS

Tabla 2.1 Tipos de relés de protección	55
Tabla 3.1 Características de las líneas del estado Sucre	91
Tabla 3.2 Características de las líneas del estado Anzoátegui	92
Tabla 3.3 Características de las líneas del estado Monagas	92
Tabla 3.4 Características de las líneas del estado Bolívar	93
Tabla 3.5 Impedancia de las líneas del estado Monagas	93
Tabla 3.6 Impedancia de las líneas del sur del estado Anzoátegui	94
Tabla 3.7 Impedancia de las líneas del norte del estado Anzoátegui	94
Tabla 3.8 Impedancia de las líneas del estado Sucre	95
Tabla 3.9 Impedancia de las líneas del estado Bolívar	95
Tabla 3.10 Cargas conectadas a las barras de 115kV	95
Tabla 3.11 Transformadores de potencia de Sucre	96
Tabla 3.12 Transformadores de potencia de Anzoátegui norte	97
Tabla 3.13 Transformadores de potencia de Anzoátegui sur	98
Tabla 3.14 Transformadores de potencia de Monagas	99
Tabla 3.15 Transformadores de potencia de Delta Amacuro	100
Tabla 3.16 Transformadores de potencia de Bolívar	100
Tabla 5.1 Cortocircuitos en las subestaciones del estado Sucre	134
Tabla 5.2 Cortocircuitos en las subestaciones del norte de Anzoátegui	135
Tabla 5.3 Cortocircuitos en las subestaciones del sur de Anzoátegui	135
Tabla 5.4 Cortocircuitos en las subestaciones del estado Maturín	135
Tabla 5.5 Cortocircuitos en las subestaciones del estado Bolívar	136
Tabla 5.6 Valores actuales de zonas del estado Monagas	138
Tabla 5.7 Valores actuales de zonas del sur del estado Anzoátegui	139
Tabla 5.8 Valores actuales de zonas del norte del estado Anzoátegui	139
Tabla 5.9 Valores actuales de zonas del estado Sucre	140

Tabla 5.10 Valores actuales de zonas del estado Bolívar	141
Tabla 5.11 Clasificación de las líneas del estado Monagas	142
Tabla 5.12 Clasificación de las líneas del sur de Anzoátegui	142
Tabla 5.13 Clasificación de las líneas del norte de Anzoátegui	143
Tabla 5.14 Clasificación de las líneas del estado Sucre	144
Tabla 5.15 Clasificación de las líneas del estado Bolívar	145
Tabla 5.16 Valores de corrientes monofásica en Monagas	148
Tabla 5.17 Valores de corrientes monofásicas en el sur de Anzoátegui	149
Tabla 5.18 Valores de corrientes monofásicas en el norte de Anzoátegui .	150
Tabla 5.19 Valores de corrientes monofasicas en Sucre	151
Tabla 5.20 Valores de corrientes monofásicas en Bolívar	151
Tabla 5.21 Valores de corrientes trifasicas en Monagas	155
Tabla 5.22 Valores de corrientes trifásicas en el sur de Anzoátegui	156
Tabla 5.23 Valores de corrientes trifásicas en el norte de Anzoátegui	156
Tabla 5.24 Valores de corrientes trifasicas en Sucre	157
Tabla 5.25 Valores de corrientes trifasicas en Bolívar	158
Tabla 5.26 Valores de alcance resistivo en Monagas	160
Tabla 5.27 Valores de alcance resistivo en Anzoátegui sur	161
Tabla 5.28 Valores de alcance resistivo en Anzoátegui norte	162
Tabla 5.29 Valores de alcance resistivo en Sucre	163
Tabla 5.30 Valores de alcance resistivo en Bolívar	164
Tabla 5.31 Valores de ajuste propuesto completo de Monagas	164
Tabla 5.32 Valores de ajuste propuesto completo de Anzoátegui sur	165
Tabla 5.33 Valores de ajuste propuesto completo de Anzoátegui norte	165
Tabla 5.34 Valores de ajuste propuesto completo de Sucre	166
Tabla 5.35 Valores de ajuste propuesto completo de Bolívar	167
Tabla 5.36 Valores de ajuste para Monagas	167
Tabla 5.37 Valores de ajuste para el sur de Anzoátegui	168
Tabla 5 38 Valores de aiustes para el norte de Anzoátegui	169

Tabla 5.39 Valores de ajustes para Sucre	170
Tabla 5.40 Valores de ajustes para Bolívar	171

LISTA DE FIGURAS

Figura	1.1 Estructura organizativa	. 30
Figura	1.2 Estructura organizativa de la división	. 31
Figura	2.1 Diagrama de bloque, principio de operación	42
Figura	2.2 Esquema subalcance permitido	. 42
Figura	2.3 Diagrama de bloque, principio de operación	43
Figura	2.4 Esquema sobrealcance permitido	. 44
Figura	2.5 Esquema de aceleración de zona	. 44
Figura	2.6 Transformador de potencia del tipo inductivo	46
Figura	2.7 Transformador de potencia del tipo capacitivo	47
Figura	2.8 Atracción electromagnética tipo solenoide	50
Figura	2.9 Atracción electromagnética tipo Armadura	50
Figura	2.10 Inducción electromagnética tipo disco	. 51
Figura	2.11 Inducción electromagnética tipo copa	. 52
Figura	2.12 Característica de funcionamiento del relé de impedancia	. 57
Figura	2.13 Característica de un relé de impedancia en R-X	. 58
Figura	2.14 Tiempo de funcionamiento vs impedancia para un relé	. 59
Figura	2.15 Característica de funcionamiento del relé de reactancia	61
Figura	2.16 Característica de un relé direccional	63
Figura	2.17 Características del relé de distancia del tipo admitancia	63
Figura	2.18 Característica cuadrilateral del relé de distancia	65
Figura	2.19 Efecto de fuentes intermedia positivo	. 68
Figura	2.20 Efecto de fuente intermedia negativo	69
Figura	2.21 Efecto de la resistencia de falla en los relés de distancia	. 71
Figura	3.1 Mapa de los estados de las subestaciones en estudio	. 73
Figura	3.2 Ubicación de las subestaciones en el estado Sucre	. 74
Figura	3.3 Ubicación de las subestaciones en el estado Anzoátegui	. 78

Figura	3.4 Ubicación de las subestaciones en el estado Monagas	85
Figura	3.5 Ubicación de las subestación en el estado Delta Amacuro	89
Figura	3.6 Ubicación de las subestaciones en el estado Bolívar	90
Figura	4.1 Botón para editar la ventana de cortocircuito	. 102
Figura	4.2 Opción para editar la ventana de cortocircuito	. 102
Figura	4.3 Opción para editar la ventana de cortocircuito	. 103
Figura	4.4 Ventana para el cálculo de cortocircuito opciones básicas	. 104
Figura	4.5 Ventana para el cálculo de cortocircuito opción avanzada	. 105
Figura	4.6 Modelado de Protecciones con PowerFactory	. 107
Figura	4.7 Ventana para Modificar o Crear Dispositivos de Protección	. 108
Figura	4.8 Submenú de Nuevos Dispositivos	. 109
Figura	4.9 Transformador de Corriente	. 110
Figura	4.10 Transformador de Corriente opción avanzada	. 111
Figura	4.11 Transformador de Voltaje	. 112
Figura	4.12 Secundario de un Transformador de Voltaje	. 113
Figura	4.13 Creación de una protección de distancia	. 114
Figura	4.14 Ángulo de relé y ángulo característico	. 116
Figura	4.15 Diagrama de distancia-tiempo	. 117
Figura	4.16 Creando un diagrama de distancia-tiempo	. 118
Figura	4.17 Definición de ruta	. 118
Figura	4.18 Despliegue de ventana	. 119
Figura	4.19 Diagrama distancia-tiempo	. 119
Figura	4.20 Otra forma de crear un diagrama	. 120
Figura	4.21 Nuevo panel de instrumentación virtual	. 121
Figura	4.22 Selección del diagrama	. 121
Figura	4.23 Editor de dialogo del diagrama distancia-tiempo	. 123
Figura	4.24 Creando un diagrama R-X	. 127
Figura	4.25 Otra forma de crear un diagrama R-X	. 128
Figura	4.26 Diagrama R-X	. 128

Figura	4.27 Diagrama R-X como resultado de un cortocirco	uito	130	
Figura	4.28 Ajustando el diagrama R-X		132	
Figura	5.1 Ajustes de etapas en líneas no compensadas		138	
Figura	5.2 Efecto infeed en zona 1		146	
Figura	5.3 Efecto Infeed en Zona 2		153	
Figura	5.4 Caso de estudio		176	
Figura	5.5 Diagrama de distancia-tiempo para la falla Indio	-Muscar	177	
Figura	A.1 Diagrama unifilar completo de Casanay Barbac	oa I ¡E ɪ	rror!	
Marca	dor no definido.			
Figura	A.2 Diagrama unifilar de la S/E Casanay¡Error!	Marcador	no	
definio	lo.			
Figura	A.3 Diagrama unifilar de la S/E Guiria .¡Error! Marc	ador no defin	ido.	
Figura	A.4 Diagrama unifilar de la S/E Irapa¡Error! Marc	ador no defin	ido.	
Figura	A.5 Diagrama unifilar de la S/E Carúpano¡Error!	Marcador	no	
definic	lo.			
Figura	A.6 Diagrama unifilar de la S/E Cariaco¡Error!	Marcador	no	
definic	lo.			
Figura	A.7 Diagrama unifilar de la S/E Manzanares¡Error!	Marcador	no	
definic	lo.			
Figura	A.8 Diagrama unifilar de la S/E Cumana III¡Error!	Marcador	no	
definido.				
Figura	A.9 Diagrama unifilar de la S/E Tres Picos¡Error!	Marcador	no	
definic	lo.			
Figura	A.10 Diagrama unifilar de la S/E Santa Fe¡Error!	Marcador	no	
definido.				
Figura	A.11 Diagrama unifilar de la S/E Cumana II¡Error!	Marcador	no	
definido.				
Figura	A.12 Diagrama unifilar de la S/E Bordones¡Error!	Marcador	no	
definido.				

Figura A.13 Diagrama unifilar de la S/E Guanta II¡Error!	Marcador	no		
definido.				
Figura A.14 Diagrama unifilar de la S/E Guanta I¡Error!	Marcador	no		
definido.				
Figura A.15 Diagrama unifilar de la S/E Guaraguao¡Error!	Marcador	no		
definido.				
Figura A.16 Diagrama unifilar de la S/E Paraíso¡Error!	Marcador	no		
definido.				
Figura A.17 Diagrama unifilar de la S/E Curaguaro¡Error!	Marcador	no		
definido.				
Figura A.18Diagrama unifilar de la S/E Chuparin¡Error!	Marcador	no		
definido.				
Figura A.19 Diagrama unifilar de la S/E Parchita¡Error!	Marcador	no		
definido.				
Figura A.20 Diagrama unifilar de la S/E Isleta ¡Error! Marc	ador no defin	ido.		
Figura A.21 Diagrama unifilar de la S/E Clarines¡Error!	Marcador	no		
definido.				
Figura A.22 Diagrama unifilar de la S/E Cuartel¡Error!	Marcador	no		
definido.				
Figura A.23 Diagrama unifilar de la S/E Lechería¡Error!	Marcador	no		
definido.				
Figura A.24 Diagrama unifilar de la S/E Barcelona¡Error!	Marcador	no		
definido.				
Figura A.25 Diagrama unifilar de la S/E Esfuerzo¡Error!	Marcador	no		
definido.				
Figura A.26 Diagrama unifilar de la S/E Tronconal V¡Error!	Marcador	no		
definido.				
Figura A.27 Diagrama unifilar completo Indio-Tigre I¡Error!	Marcador	no		
definido.				

Figura A.28 Diagrama unifilar de la S/E Barbacoa l¡Error! Marcador no definido.

Figura A.29 Diagrama unifilar de la S/E Pilones¡Error! Marcador no definido.

Figura A.30 Diagrama unifilar de la S/E Roble; Error! Marcador no definido.

Figura A.31 Diagrama unifilar de la S/E Alfredo Salazar¡Error! Marcador no definido.

Figura A.32 Diagrama unifilar de la S/E Rebombeo l¡Error! Marcador no definido.

Figura A.33 Diagrama unifilar de la S/E Rebombeo II¡Error! Marcador no definido.

Figura A.34 Diagrama unifilar de la S/E Tigre II¡Error! Marcador no definido.

Figura A.35 Diagrama unifilar de la S/E Tigre III¡Error! Marcador no definido.

Figura A.36 Diagrama unifilar de la S/E Tigre I¡Error! Marcador no definido.

Figura A.37 Diagrama unifilar de la S/E Indio.¡Error! Marcador no definido.

Figura A.38 Diagrama unifilar de la S/E Travieso¡Error! Marcador no definido.

Figura A.39 Diagrama unifilar de la S/E Muscar¡Error! Marcador no definido.

Figura A.40 Diagrama unifilar de la S/E Tejero¡Error! Marcador no definido.

Figura A.41 Diagrama unifilar de la S/E Santa Bárbara; Error! Marcador no definido.

Figura A.42 Diagrama unifilar de la S/E Quiriquire¡Error! Marcador no definido.

Figura A.43 Diagrama unifilar de la S/E Temblador¡Error! Marca	ador no		
definido.			
Figura A.44 Diagrama unifilar de la S/E Maturín¡Error! Marcac	dor no		
definido.			
Figura A.45 Diagrama unifilar de la S/E la Paz¡Error! Marcad	or no		
definido.			
Figura A.46 Diagrama unifilar de la S/E Boulevard¡Error! Marca	ador no		
definido.			
Figura A.47 Diagrama unifilar de la S/E Jusepín¡Error! Marcac	dor no		
definido.			
Figura A.48 Diagrama unifilar de la S/E Veladero¡Error! Marca	dor no		
definido.			
Figura A.49 Diagrama unifilar de la S/E Tucupita¡Error! Marca	dor no		
definido.			
Figura A.50 Diagrama unifilar Completo¡Error! Marcador no	definido.		
Figura A.51 Diagrama unifilar de la S/E Bolívar¡Error! Marcad	lor no		
definido.			
Figura A.52 Diagrama unifilar de la S/E Farallones¡Error! Marca	ador no		
definido.			

CAPÍTULO I

DESCRIPCIÓN GENERAL DE LA EMPRESA CADAFE

1.1 RESEÑA HISTÓRICA

CADAFE, la empresa eléctrica del Estado Venezolano, es la más grande del país y suministra el servicio de electricidad a más de tres millones de usuarios legalizados y aproximadamente 93% de la población nacional. La Compañía Anónima De Administración y Fomento Eléctrico, CADAFE, fue creada en 1958 con el fin de optimizar la administración y la operación de las empresas de electricidad dependientes del Estado Venezolano que estaban repartidas en todo el país.

Desde ese momento, desarrolló una infraestructura eléctrica en Generación, Transmisión y Distribución y logró un alto grado de electrificación en Venezuela, lo cual le permite atender, hoy en día a más del 80 por ciento del territorio nacional. Gracias a su presencia a nivel nacional, se ha hecho posible el funcionamiento de empresas vitales y estratégicas para el país, como la industria siderúrgica, metalmecánica, del aluminio, manufacturera, alimentos, petroquímica y telecomunicaciones, entre otras.

Además, presta un servicio público, ya que suministra electricidad a hogares, hospitales, centros de enseñanzas, sistemas de protección, seguridad ciudadana, investigaciones científicas, entretenimiento y alumbrado público, garantizando la calidad de vida de los venezolanos. Prácticamente está presente en todas las actividades del ser humano.

Enmarcado en el proceso revolucionario están en ejecución una serie de proyectos denominados "Plan de los 100 días" por un monto cercano a los mil millones de dólares, que permitirán incrementar la capacidad de transmisión y de transformación eléctrica, mejorando la confiabilidad y la calidad del servicio. En el mes de septiembre de 2005, la asamblea de accionistas de CADAFE acordó unificar la dirección funcional, administrativa y operativa de los entes de la Corporación, mediante la sustitución de los presidentes y juntas directivas de las filiales por el Presidente y Junta Directiva de CADAFE.

En esa dirección, el Ejecutivo Nacional aprobó un Decreto que ordenó la fusión de CADAFE con sus filiales y dejó sin efecto el Decreto que disponía la privatización del Sistema Eléctrico de Monagas y Delta Amacuro. Al reunificarse CADAFE, se crearon nueve regiones para atender el servicio en todo el país, bajo un esquema de mayor flexibilidad operativa, desconcentración de su funcionamiento operativo y un control más eficiente.

CADAFE, a finales del 2007 pasó a convertirse en Filial de la Corporación Eléctrica Nacional, como es sabido, el Ejecutivo Nacional a través del Ministerio del Poder Popular para la Energía y Petróleo (MENPET) resolvió reorganizar el territorio nacional para el ejercicio de la actividad de distribución de potencia y energía eléctrica, lo cual quedó establecido en la publicación de la Resolución 190 del MENPET, en la Gaceta Oficial Nº 38.785 del día 8 de octubre de 2007. A tales efectos se crean las siguientes regiones operativas:

 Región Noroeste que comprende los estados Zulia, Falcón, Lara y Yaracuy.

- Región Norcentral integrada por los estados Carabobo, Aragua,
 Miranda Vargas y Distrito Capital.
- Región Oriental conformada por los estados Anzoátegui, Monagas,
 Sucre, Nueva Esparta y Delta Amacuro.
- Región Central que comprende los estados Guárico, Cojedes,
 Portuguesa, Barinas y Apure.
- Región Andina compuesta por los estados Mérida, Trujillo y Táchira.
- Región Sur integrada por los estados Bolívar y Amazonas.

El artículo 6 de la Resolución señala que cuando por la naturaleza de las acciones a implementar sea requerida la participación de la Compañía Anónima de Distribución y Fomento Eléctrico (CADAFE) ésta ejecutará las instrucciones del área a cargo del área respectiva. El Ministerio del Poder Popular para la Energía y Petróleo, ha hecho hincapié en que el proceso iniciado tiene como objetivo redistribuir las cargas de manera que cada empresa de la Corporación Eléctrica Nacional (ELECAR, EDELCA; ENELBAR Y CADAFE) asuma el liderazgo en función de su potencial y fortalezas. El objetivo es reagruparse como equipos de gestión bajo una gran Corporación Eléctrica Nacional aprovechando los valiosos equipos existentes en cada Región.

Esto permitirá que cada una de las regiones tenga respuestas más rápidas a los problemas de servicio y se pueda organizar mejor el crecimiento de la infraestructura, en función de los requerimientos del servicio y sobre todo del pueblo de la República Bolivariana de Venezuela que merece ser iluminado con una Energía óptima que responda a sus intereses y necesidades.

1.2 CORPORACIÓN ELÉCTRICA NACIONAL

La Corporación Eléctrica Nacional, creada por el Gobierno, mediante decreto presidencial N° 5.330, en julio de 2007. Es la encargada de la realización de las actividades de generación, transmisión, distribución y comercialización de potencia y energía eléctrica, la misma tiene un plazo de tres años para fusionar a CADAFE, EDELCA, ENELVEN, ENELCO, ENELBAR, SENECA y ENAGEN, en una persona jurídica única.

Por ser la calidad del servicio uno las de mayores inconvenientes, en la iniciativa se asignan 35 millardos y 20,9 millardos de bolívares a las regiones Oriental y Andina, respectivamente, seguidas por la Noroeste (15,4 millardos), Central (10,8 millardos), Norcentral (10,2 millardos) y Sur (4,8 millardos de bolívares). El Estado adquirió las compañías de La Electricidad de Caracas (ELECAR), Yaracuy (CALEY), Valencia (ELEVAL), Puerto Cabello (CALIFE) y Ciudad Bolívar (ELEBOI), así como el Sistema Eléctrico de Nueva Esparta (SENECA) y TURBOVEN.

Estas empresas se sumaron a las estatales: Compañía Anónima de Administración y Fomento Eléctrico (CADAFE), Electrificación del Caroní (EDELCA), Energía Eléctrica de Venezuela (ENELVEN) y de la Costa Oriental (ENELCO), Energía Eléctrica de Barquisimeto (ENELBAR) y Empresa Nacional de Generación (ENAGEN), esta última creada en noviembre de 2006. A partir del primero de enero del 2008, las compañías se fusionaron en seis: ELECAR, CADAFE, EDELCA, ENELVEN, ENELBAR y ENAGEN. En 2009 se convertirán en las operadoras de las actividades de generación, transmisión, distribución y comercialización de potencia y energía eléctrica.

1.3 UBICACIÓN GEOGRÁFICA

CADAFE, en el estado Anzoátegui se encuentra ubicada en la Av. José Antonio Anzoátegui, sector Guanire, diagonal al Instituto Venezolana del Seguro Social.

1.4 MISIÓN

Prestar un servicio público de energía eléctrica de calidad, con un personal comprometido en la gestión productiva, para satisfacer necesidades de los usuarios, hacer uso eficiente de los recursos, en una Gestión que garantice ingresos suficientes, necesarios a las sostenibilidad financiera de la organización y en concordancia con un Proyecto País expresado en políticas sociales y de desarrollo.

1.5 VISIÓN

Ser una empresa estratégica posicionada en la prestación del servicio de energía eléctrica, con tecnología de punta y un personal calificado, comprometido con el desarrollo económico y social del país, ofreciendo servicios de calidad a sus usuarios, solvente con sus proveedores, con una gestión transparente y una sostenibilidad financiera.

1.6 VALORES

- Ética organizacional.
- Responsabilidad por los resultados.
- Orientación al usuario/vocación de servicio.

- Respeto.
- Apoyo mutuo y trabajo en equipo.
- Comunicación efectiva.

1.7 ESTRUCTURA ORGANIZACIONAL

CADAFE, se encuentra estructurada organizacionalmente, según se puede observar en el organigrama anexo.

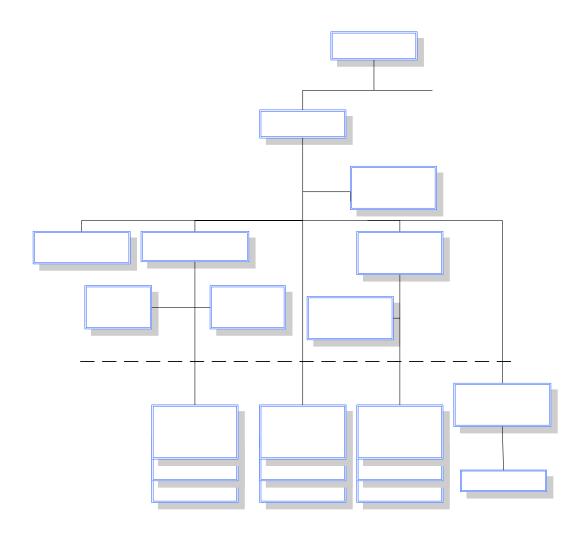
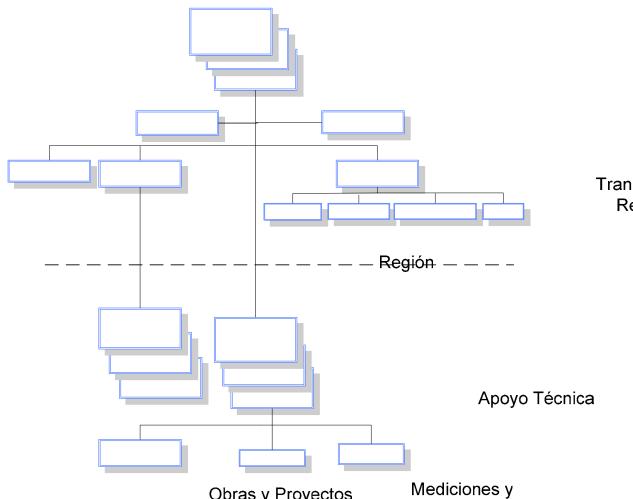



Figura 1.1 Estructura organizativa

Obras y Proyectos Mediciones y Figura 1.2 Estructura organizativa de la división Protecciones

1.8 PLANTEAMIENTO DEL PROBLEMA

CADAFE es una empresa creada por el gobierno nacional en el año de 1958, para suministrar energía eléctrica a todo el territorio nacional. Necesitando para ello un sistema de transmisión conformado por niveles de tensión a 400kV, 230kV y 115kV distribuidos en el oriente, centro, occidente y sur de Venezuela. Para principios del año 2007 nace la Nueva CADAFE, al concretarse la fusión con sus filiales de distribución (ELEORIENTE,

> Mediciones y **Transmisiones**

Τ

Re

ELEOCCIDENTE, ELECENTRO, CADELA y SEMDA), las cuales desaparecen para integrarse en una sola empresa. La Nueva CADAFE se cimienta sobre la base de construir una empresa moderna y que pueda responder a los reguerimientos de un país en crecimiento.

La red troncal de transmisión de la empresa CADAFE a nivel oriental, del sistema de 115kV ha presentado cambios en la topología de la red, que a su vez originan un cambio en los niveles de cortocircuitos. Una consecuencia del incremento de los niveles de cortocircuito es que los relés al momento de la falla vean una impedancia aparente de línea diferente, para las cuales no fueron ajustados, Originando actuaciones erráticas en los mismos. Las fuentes intermedias también causan que los relés vean una impedancia distinta a la del dispositivo de protección pudiendo ocasionar un subalcance y por ende una acción errática en ellos.

Debido a las situaciones anteriormente planteadas surge la necesidad de revisar y mejorar las coordinaciones actuales de las protecciones de distancia y de esta manera corregir los ajustes en los relés de las diferentes subestaciones que así lo requieran, además de implementar nuevos métodos de coordinación, todo con el fin de maximizar la selectividad de los relés en caso de fallas en el sistema eléctrico.

1.9 OBJETIVOS

1.9.1 Objetivo General

Estudiar los ajustes de las protecciones de distancia de la red de 115kV asociadas a las subestaciones pertenecientes a CADAFE en el sistema troncal de transmisión.

1.9.2 Objetivos Específicos

- Describir el Sistema de Transmisión a nivel de 115kV.
- Revisar los niveles de cortocircuitos actuales.
- Identificar los criterios y ajustes actuales de las protecciones de distancia de la red.
- Realizar análisis de cortocircuito validando el nuevo criterio de ajuste de protecciones.
- Proponer mejoras en las coordinaciones de protecciones.

CAPÍTULO 2

MARCO TEÓRICO

2.1 CORTOCIRCUITO

Se entiende por cortocircuito aquellos defectos provocados por un contacto entre un conductor y tierra o bien entre conductores. Cuando tal defecto se produce en instalaciones eléctricas de alta tensión, dicho contacto tiene lugar a través de un arco eléctrico, con las consecuencias correspondientes al mismo. Los cortocircuitos pueden originarse por múltiples causas, como pueden ser:

2.1.1 De origen eléctrico

Son debidos a contactos directos de dos conductores activos o bien por defectos de aislamiento entre ellos.

2.1.2 De origen mecánico

Son debidos principalmente a la caída de un cuerpo extraño sobre una línea aérea, a una rotura de conductores o aisladores, a un golpe de pico en un cable subterráneo, etc.

2.1.3 Por falsa maniobra

Como consecuencia de la apertura de un seccionador en carga.

2.1.4 De origen atmosférico

Suelen ser debido a un rayo que alcanza los conductores de una línea, las cuales pueden provocar aproximación de conductores, alteraciones de las superficies de los aisladores, etc. [1]

2.2 TIPOS

Los cortocircuitos por lo general no afectan a todos los conductores de una forma simultánea. En el caso de redes trifásicas cuya tensión de servicios sea igual o superior a los 60kV, alrededor del 70 al 80% de los cortocircuitos se producen, o al menos empiezan, entre una fase y tierra. Teniendo en cuenta además que si el defecto no se elimina con suficiente rapidez, el arco puede alcanzar la segunda e incluso la tercera fase.

2.2.1 Cortocircuito tripolar o simétrico

Las fallas entre las tres fases, trifásicos o tripolares (cortocircuitos simétricos) son aquellos en los que las tres tensiones correspondientes al punto del cortocircuito son nulas y las tres fases presentan cargas de cortocircuito simétricas. Aunque este tipo de falla no se suele presentar a menudo, estos cortocircuitos suelen ser debido a:

- Fenómeno mecánico: como la caída o destrucción de una torre de alta tensión.
- Caída directa de un rayo sobre una fase: si la resistencia de la toma de tierra de la torre es elevada, puede resultar un potencial de tierra suficientemente elevado para que se produzca el cebado en las otras fases.

2.2.2 Cortocircuito bipolar sin falla a tierra

Los cortocircuitos entre dos fases o bipolares sin falla a tierra, aparecen excepcionalmente y son debidos prácticamente a causas mecánicas. Cuando aparecen lo hacen con corrientes simétricas de cortocircuito menores, en un principio, que las que se presentan en los cortocircuitos tripolares.

2.2.3 Cortocircuito bipolar con falla a tierra

Se produce en las mismas circunstancias y las mismas características que los anteriores, pero son menos frecuentes.

2.2.4 Cortocircuito unipolares a tierra

Este tipo es el más frecuente. En redes con puesta a tierra a través de una impedancia de bajo valor óhmico, la corriente de cortocircuito dirigida a tierra puede superar la mayor corriente que aparezca en un cortocircuito tripolar.

2.2.5 Cortocircuito de doble contacto a tierra

Se presenta en redes con neutro aislado o en aquellas con puesta a tierra conpensante. Esta corriente no puede ser mayor que la correspondiente a un cortocircuito bipolar con o sin contacto a tierra. [1]

2.3 CONSECUENCIA

En general, la presencia de un cortocircuito sobre una red provoca sobrecorrientes, caídas de tensión y desequilibrios en las tensiones y corrientes de las tres fases. Estos fenómenos, cuya importancia depende de la constitución de la red, originan toda una serie de consecuencias que se indican a continuación:

2.3.1 Calentamientos

Los calentamientos producidos por las corrientes de cortocircuitos son de temer, particularmente en los cables subterráneos de media tensión que poseen una tolerancia calorífica considerable. Los arcos originados como consecuencia de la perforación de un cable subterráneo, puede producir la fusión del cobre y el plomo del cable sobre de varios decímetros, si la falla no queda eliminada rápidamente.

2.3.2 Accidente en diyuntores

Los diyuntores y fusible deben tener una capacidad de ruptura adecuada para que durante un cortocircuito puedan funcionar y cumplir su cometido sin sufrir avería ni representar peligro para el personal y el equipo eléctrico. Por tanto, para elegir adecuadamente un diyuntor es necesario calcular tanto el valor de la corriente de cortocircuito en el momento en el que se produce la interrupción del circuito, como el valor máximo de dicha corriente en los momentos iníciales.

2.3.3 Esfuerzos electrodinámicos anormales

El paso de las corrientes muy intensas va acompañado de esfuerzos electrodinámicos muy importantes que pueden producir deformaciones de barras y conexiones, rotura de aisladores, soportes e incluso averías considerables sobre los arrollamientos de las bobinas de reactancia y de los transformadores, si estos no tienen la rigidez mecánica suficiente.

2.3.4 Caída de tensión elevada

Las corrientes de cortocircuito al atravesar los diferentes elementos de la redes, provocan caídas de tensión que pueden provocar el desenganche de las maquinas sincrónicas o asincrónicas y poner en peligro la estabilidad de las redes. [1]

2.4 SISTEMAS DE PROTECCIÓN

Dentro de la ingeniería Eléctrica, el campo de los sistemas de protección representa una especialidad relativamente poco conocida. La protección de los sistemas de potencia aseguran una minimización de los daños en equipos cuando estos fallan, permiten mantener la continuidad de servicios a través de los equipos no fallados de una manera rápida y sin que el usuario se dé por enterado de que ha ocurrido una falla dentro del sistema de potencia, traduciéndose esto en una confiabilidad del sistema de potencia, y lo que es más importante, previene la vida de seres humanos, evitando la exposición de los mismos a las partes falladas.

2.4.1 Características de un sistema de protección

El diseño de un Sistema de Protección, depende de la configuración del Sistema de Potencia; sin embargo cualquiera que sea este el Sistema de Protección debe tener las siguientes características básicas:

- **Sensibilidad**: Debe tener la suficiente sensibilidad para detectar las fallas que afecten al Sistema de Potencia.
- **Selectividad**: Se dice, que un esquema de protecciones es selectivo, cuando solo actúan los elementos necesarios para despejar una falla, retirando únicamente la parte afectada.
- Velocidad: Debe determinar con que rapidez es necesaria despejar la falla y poseer velocidad adecuada para hacerlo.
- Confiabilidad: Por cuanto las fallas que afectan al sistema se presentan con relativa poca frecuencia, es necesario que su diseño garantice que al presentarse una falla su operación sea correcta.
- **Sencillez**: Ejecutar sus funciones con la menor cantidad de elementos posibles.
- Mantenibilidad: Facilidad para efectuar mantenimiento. [2]

2.5 PROTECCIONES DE DISTANCIA

Las Protecciones de Distancia son usadas en sistemas enmallados de transmisión y distribución que son alimentados desde varios puntos. También se suelen utilizar como respaldo de autotransformadores.

2.5.1 Principios básicos de medición

El método más fácil para determinar fallas en una línea es midiendo la impedancia desde el punto donde hay un relé hasta donde ocurrió la falla. La impedancia medida es proporcional a la distancia entre el relé y el punto de falla, de aquí que los relés que midan impedancia se denominan relés de distancia y esto lo hacen chequeando constantemente los parámetros de tensión y corriente.

Para garantizar una adecuada medición de la direccionalidad de la falla se toma además de la corriente de cortocircuito una tensión completada que seguirá presente aun cuando la tensión de cortocircuito se haya extinguido completamente. Por ejemplo para fallas a tierra la tensión es la compuesta opuesta de la fase que presenta la falla (corriente I_R se selecciona V_S - V_T).

Para fallas bifásicas sin contacto a tierra es la tensión de fase opuesta a la de las fases que presentan fallas (corriente I_{RS} se selecciona V_{T} - V_{R}). El relé selecciona estas tensiones de referencia de acuerdo al tipo de perturbación o falla en la red.

En el caso de fallas trifásicas a tierra cerca donde se encuentran ubicados los relés; donde existe la posibilidad de perder la medición de la direccionalidad se cuenta con un módulo o tarjeta memorizadora de tensiones la cual mantiene las tensiones con frecuencia de la red y posición de fase correcta por un lapso de tiempo suficientemente como para poder realizar la determinación de la dirección.

2.5.1.1 Arrangue

Tiene por objeto detectar estados de falla en la red, seleccionar las magnitudes de las fases afectadas, guiarlos al sistema de medición y producir el arranque de los temporizadores de etapas.

2.5.1.1.2 Arranque por Sobrecorriente

Cuando se detecta un estado de sobrecarga en el sistema (tensiones nominales con corrientes de carga superiores a los permitidos en la red).

2.5.1.1.3 Arranque por Subimpedancia

Cuando se detecta una condición de falla en la red, lo cual significa altas corrientes con una condición de caída de voltaje en la fase fallada.

2.6 ESQUEMA DE PROTECCION DE DISTANCIA

Con estos esquemas es posible detectar fallas en el 100% de la línea para tener selectividad y rapidez en el despeje de la misma. A continuación presentamos las lógicas de sobrealcance permitido, subalcance permitido y aceleración de zona.

2.6.1 Esquema de Subalcance Permitido (PUTT):

Se usa en aquellos casos en que la resistencia de arco es pequeña en comparación con la impedancia de la línea (a partir de 30 km), de otra forma

existe el peligro de que la resistencia de arco produzca un error tan grande que el sistema de protección detecte la falla fuera de la primera etapa.

Este esquema la primera zona del relé se ajusta al 85% de la impedancia de la línea y la orden de disparo de cada relé va a su terminal local y envía una señal de alta frecuencia al terminal remoto para confirmar la existencia de la falla en el tramo protegido.

En caso de que la falla ocurra en el 90% de un terminal, mediante el arranque (detector de falla) y la recepción de alta frecuencia del extremo remoto origina el disparo en tiempo de primera zona. El terminal B detecta la falla en su primera zona, produce el disparo al interruptor B y envía alta frecuencia al terminal A, el cual origina su disparo mediante la recepción de AF y arranque.

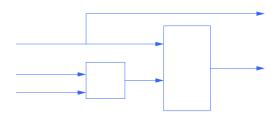


Figura 2.1 Diagrama de bloque, principio de operación [3]

Figura 2.2 Esquema subalcance permitido [3]

2.6.2 Esquema de Sobrealcance Permitido (POTT):

Se implementa en aquellos casos en que la resistencia de arco puede ser mayor a la impedancia de la línea, (Menor a 30 km) o en Sistemas con Compensación Serie. En este esquema la zona de sobrealcance o zona 2 del relé se ajusta entre un 120% a 130% de la impedancia de línea y la orden de disparo es ejecutada cuando se recibe la señal de alta frecuencia del extremo remoto.

Para fallas en F1 ambos terminales detectan la falla en primera zona y envían mutuamente la señal de alta frecuencia al extremo remoto produciendo así el disparo.

Para fallas en F2, el terminal A detecta la falla en su zona de sobrealcance y envía alta frecuencia, el terminal B no envía la señal de alta frecuencia y tampoco dispara al recibir esta señal desde A ya que no mide la falla en zona 2, con lo cual no se produce disparo en ningún extremo. Este esquema depende altamente de los equipos de HF, ya que si en uno de los extremos no se recibe HF el disparo será en tiempo de segunda zona.

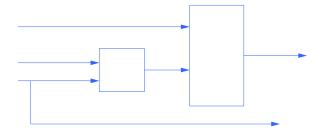


Figura $\,$ 2.3 Diagrama de bloque, principio de operación $^{[3]}$

Figura 2.4 Esquema sobrealcance permitido [3]

La ventaja de este esquema sobre el de subalcance permitido es que al ser mayor el alcance en cuanto a impedancia de línea, protege mayor rango de resistencia de falla.

2.6.3 Esquema Aceleración de zona:

En este esquema la orden de disparo se utiliza para que el alcance de la segunda zona se efectúe en tiempo de primera o instantáneo al recibir la señal de alta frecuencia del terminal remoto.

Al ocurrir una falla en F el terminal B detecta la falla en su primera zona produciéndose el disparo del interruptor B y enviando simultáneamente una señal de AF al terminal A, éste al recibir la señal extiende el alcance de su primera zona produciendo el disparo del interruptor A.

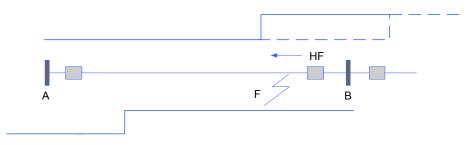


Figura 2.5 Esquema de aceleración de zona [3]

2.7 RELES DE PROTECCION

Es un conjunto de dispositivos asociados entre sí para interpretar los parámetros del sistema (provenientes de los TC y TP), establecer una comparación con los ajustes y luego tomar acciones.

2.7.1 Transformadores de medida

El transformador es una maquina estática cuya función es transferir energía eléctrica de un sistema a otro de la siguiente manera:

- Modificando el valor de la corriente.
- Modificando el valor de la tensión.
- Con una frecuencia constante.

Son destinados a la alimentación de instrumentos de medida, Contadores, Relés de protección, etc, permitiendo así una separación galvánica entre los instrumentos y la Red Eléctrica de Alta Tensión.

Existen dos tipos básicos de transformadores de medida los cuales son:

- Transformadores de Potencial o Tensión (TP, TT, PT, etc).
- Transformadores de Corriente o Intensidad (TC, TI, CT, etc).

2.7.1.1 Transformadores de potencial

Los TP ó Transformadores de Potencial por lo general poseen uno o dos núcleos secundarios. Los TP pueden ser de dos tipos:

2.7.1.1.1 Tipo Inductivo

Utilizados generalmente en tensiones de 13.8 y 34.5kV donde tanto el primario como el secundario son devanados y aislados entre sí, ver figura 2.6

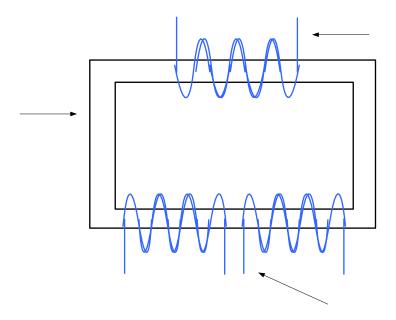


Figura 2.6 Transformador de potencia del tipo inductivo [3]

2.7.1.1.2 Tipo Capacitivo

Comúnmente utilizados en tensiones iguales o superiores a 115kV, en donde se hace un divisor de tensión con dos capacitores en serie para reducir la tensión primaria, ver figura 2.7. Magnetico

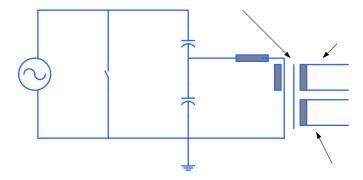


Figura 2.7 Transformador de potencia del tipo capacitivo [3]

2.7.1.2 Transformadores de corriente

U

Los TC son únicamente del tipo inductivo, los cuales:

- Pueden tener una o varias espiras en el primario que se conecta en serie con el circuito cuya intensidad se desea medir.
- Pueden tener primarios que se componen de una, dos o cuatro secciones permitiendo una, dos o tres intensidades primarias nominales mediante el adecuado acoplamiento de las mismas.
- Pueden tener uno o varios arrollados secundarios bobinados cada uno sobre su circuito magnético (o núcleo). De esta manera no existe influencia de un secundario sobre el otro. [3]

2.7.2 Burden

La carga o burden es aquella que esta propiamente conectado al devanado secundario y que determina la potencia activa y reactiva en los terminales del secundario.

C1

C2

El burden se puede expresar en forma de la impedancia total de la carga expresada en ohms con la resistencia efectiva y las componentes reactivas, o bien, como los voltio amperes totales (VA) y factor de potencia a un valor de corriente específico o de voltaje y una frecuencia dada. [4]

2.7.3 Precisión

Tanto los Transformadores de Corriente (TC) como los Transformadores de Tensión (TP) poseen dos tipos de núcleos:

2.7.3.1 Núcleo para Medición

La clase de precisión se designa de la siguiente manera:

- Clase 0.1 Laboratorios
- Clase 0.2 Patrones portátiles y contadores de gran precisión
- Clase 0.5 Contadores normales y aparatos de medida
- Clase 1 Aparatos de cuadro (registradores).
- Clase 3 Para uso sin precisión.

Para el caso de los TC, estos poseen un factor de seguridad el cual guarda relación con la curva de saturación, la disposición constructiva de los núcleos y el material magnético utilizado, teniéndose así que los Núcleos para Medición pierden la precisión a 1.2xln y se saturan a 5xln, con la finalidad de no dañar los instrumentos con las elevadas corriente de fallas. Estos núcleos por lo general manejan potencias elevadas del orden de 30 a 50 VA para los TC y de 100 a 150 VA para los TP.

2.7.3.2 Núcleo para Protección:

La clase de precisión se designa de la siguiente manera:

- Clase 5P con un error de 1% a In y 5% al valor máximo de corriente indicada, por ejemplo: 5P20; indica que existirá un error de 5% a 20xIn.
- Clase 10P con un error de 3% a In y 10% al valor máximo de corriente indicado, por ejemplo: 10P20; indica que existirá un error de 10% a 20xIn.
- Estos núcleos manejan potencias del orden de 10 a 25 VA para los TC y de 50 a 150 VA para los TP y garantizan la exactitud de las corrientes de fallas para los relés de protección.

2.8 RELÉS DE PROTECCIÓN SEGÚN LA TECNOLOGÍA:

2.8.1 Relé Electromecánico

Son relés que trabajan directamente con magnitudes de tensión y corriente a través de Bobinas que impulsan partes móviles. (1930 a 1969) Estos los podemos clasificar de acuerdo a su principio de operación en:

2.8.1.1 Atracción electromagnética

Pueden ser de dos clases: solenoide y armadura.

En el relé (Solenoide) de la figura 2.8, utiliza un pivote donde la barra se mueve cuando la fuerza electromagnética producto de la corriente es mayor que la fuerza resistente del resorte.

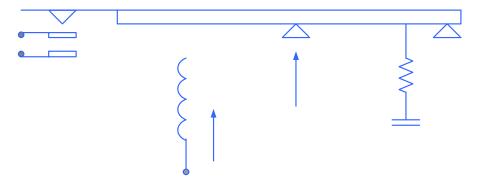


Figura 2.8 Atracción electromagnética tipo solenoide [3]

En el relé (Armadura) de la figura 2.9 se compara la acción del campo magnético de la corriente para levantar un núcleo contra la acción de la gravedad, el relé cierra su contacto cuando la acción de la corriente supera a la gravedad.

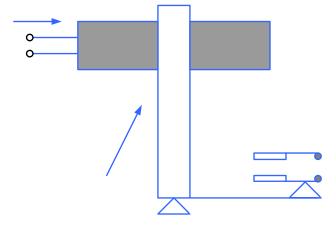


Figura 2.9 Atracción electromagnética tipo Armadura [3]

2.8.1.2 Inducción Electromagnética

Pueden ser de dos clases: de disco, de copa.

BC

SI

El relé de la figura 2.10 es un relé de inducción del tipo disco, que opera bajo el principio de los motores de polos de sombra o bobinas de sombra, en este se compara el torque electromagnético con el torque producido por un resorte en espiral, el relé cierra el contacto cuando el torque electromagnético supera al del resorte y hace girar al disco.

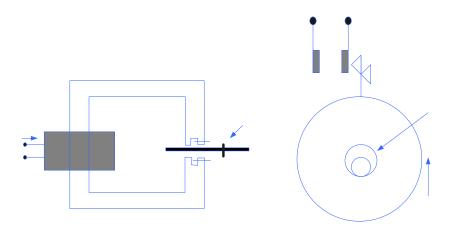


Figura 2.10 Inducción electromagnética tipo disco [3]

El relé de la figura 2.11 es un relé del tipo de copa con construcción similar al motor bifásico de control; la razón para aislar la copa del núcleo central fijo, es la de reducir la inercia y obtener relés de alta velocidad de respuesta.

En estos relés se compara, al igual que en el anterior, el torque electromagnético con el torque de un resorte en espiral, el relé cierra el contacto cuando el torque electromagnético supera al del resorte y hace girar la copa.

ı

Bobina

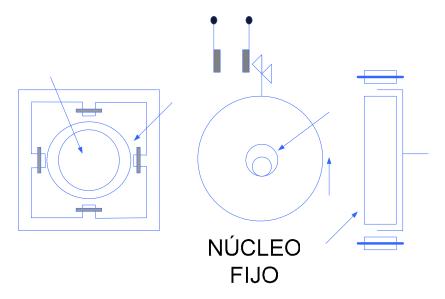


Figura 2.11 Inducción electromagnética tipo copa [3]

CON COPA

2.8.2 Relé Electrónico

Son relés que realizan evaluación de los parámetros eléctricos a través de elementos de electrónica discreta (transistores, resistencia, condensadores y algunos componentes integrados) convirtiendo las magnitudes en señales de ondas cuadradas, que se comparan con una condición preestablecida. (1969 a 1975)

2.8.3 Relé Numéricos

POLO Y BOBINA

Son relés que realizan le evaluación de los parámetros eléctricos a través de microprocesadores una vez convertidas en señales digitales, utilizando algoritmos para ello. (1975...)

En general los Relés numéricos permiten una gran flexibilidad por cuanto incluyen en su librería de programación las funciones de: Protección de Distancia, Alta Impedancia, Sobrecorriente no direccional, Cierre Sobre Falla, Sobre Voltaje, Oscilación de Potencia, Fuente Débil, Bloqueo por Desbalance de Tensión, entre otras, las cuales pueden ser activadas por el usuario o solicitar al fabricante que la misma sea incluida en función a los requerimientos y a futuro ir activando funciones de acuerdo a los requerimientos del sistema.

2.8.3.1 Funcionalidades de las protecciones numéricas

En la actualidad los diferentes fabricantes han introducido en el mercado una gama de relés numéricos cuya aplicación se centran principalmente en la protección, control y monitoreo de:

- Generadores.
- Grupo Generador transformador.
- Transformadores y Reactores.
- Barras e Interruptores.
- Banco de Condensadores.
- Líneas aéreas y cables de potencia.
- Motores, etc.

En virtud a la gran extensión de las aplicaciones antes mencionadas a continuación se indican las funcionalidades de las protecciones numéricas, más importantes en una subestación de transmisión; esta son:

- Protección diferencial de barras.
- Protección de transformadores de potencia.
- Protección de línea de transmisión.

Para nuestro caso solo hablaremos de las protecciones de líneas de transmisión

2.8.3.2 Protecciones de líneas de transmisión

Esta protección está conformada por una unidad de entradas analógicas, una unidad de alimentación DC/AC, módulo de entradas y salidas binarias, unidad central de procesamiento, entradas y salidas por puerto serial con un PC y la estación central de control y una tarjeta madre de conexión.

En los últimos años la característica de medición ha sido del tipo poligonal, considerando su ventaja respecto a la circular, en cuanto a su mayor rango de ajuste para tomar en consideración la resistencia de arco presente durante la ocurrencia de una falla y por su alta sensibilidad de arranque por detección de fallas de subimpedancia. Estas protecciones cumplen con las exigencias necesarias para el despeje rápido, selectivo, altamente sensible y confiable.

2.9 RELÉS DE PROTECCIÓN SEGÚN SU FUNCIÓN

En las subestaciones de CADAFE tenemos una gama de protecciones que tienen una determinada función y que en su conjunto conforman un esquema de protección y dependerá del equipo a proteger. Estos esquemas de Protección van desde los niveles de Tensión de 13.8kV hasta 400kV para proteger equipos, tales como: Autotransformadores, Transformadores, Generadores, Reactores, Capacitores en paralelo o serie, Barras, Líneas de Transmisión, etc. [3]

Tabla 2.1 Tipos de relés de protección

Sobrecorriente instantáneo (50)	Desbalance (46)
Sobrecorriente temporizado (51)	Sobretensión (59)
Protección a tierra (64)	Dirección de corriente AC (67)
Direccional de voltaje y potencia (92)	Diferencial (87)
Distancia (21)	Frecuencia (81)
Disparo con reposición manual (86)	Bloqueo de oscilación potencia (68)

2.10 RELES DE DISTANCIA

Los relés de distancia su principio de funcionamiento se basa en el equilibrio entre la tensión y la corriente que puede expresarse en función de la impedancia, la impedancia es una medida eléctrica de la distancia a lo largo de una línea de transmisión, lo que explica el nombre aplicado a este grupo de relés.

2.10.1 Relé de distancia del tipo impedancia

Dado que este tipo de relé incluye unidades del tipo de impedancia vamos a familiarizarnos con ellas. En términos generales, el término impedancia se puede aplicar solo a resistencia, solo a reactancia, o la combinación de las dos. En un relé de impedancia el par producido por un elemento de corriente está equilibrado con el par de un elemento de tensión. El elemento de corriente produce un par positivo (puesta en trabajo), mientras que el elemento de tensión produce un par negativo (reposición). En otras palabras un relé de impedancia es un relé de sobrecorriente de tensión de retención. Si dejamos que el efecto del resorte de control sea –K₃ la ecuación del par es:

$$T = K_1 * I^2 - K_2 * V^2 - K_3$$
 Ec.2. 1

Donde:

I: magnitud de la corriente eficaz [Amperios].

V: magnitud del voltaje eficaz [Voltios].

T: par neto [N.m]

 K_1 y K_2 : efecto de los resortes de los elementos de corriente y tensión respectivamente [Constantes].

K₃: efecto del resorte de control [Constante].

En el punto de equilibrio, cuando el relé esta en el límite del funcionamiento, el par neto es cero, la ecuación nos queda:

$$K_2 * V^2 = K_1 * I^2 - K_3$$
 Ec.2.

2

Dividiendo entre K_1*I^2 obtenemos:

$$\frac{V^2}{I^2} = \frac{K_1}{K_2} - \frac{K_3}{K_2 * I^2}$$

$$\frac{V}{I} = Z = \sqrt{\frac{K_1}{K_2} - \frac{K_3}{K_2 * I^2}}$$
 Ec.2. 3

Se acostumbra despreciar el efecto del resorte de control, ya que su efecto solo es notorio a magnitudes de corriente razonablemente bajas de aquellas encontradas de ordinario. Por lo tanto, si hacemos K₃ igual a cero, la ecuación precedente se transforma en:

$$Z = \sqrt{\frac{K_1}{K_2}} = Cons \tan te$$
 Ec.2.4

En otras palabras, un relé de impedancia esta en el límite del funcionamiento a un valor constante dado por la relación de V a I, que puede expresarse como una impedancia. La característica de funcionamiento en función de la tensión y la corriente se muestran en la figura 2.12 donde aparece el efecto del resorte de control que origina una curvatura notoria en la característica solo en el extremo de baja corriente.

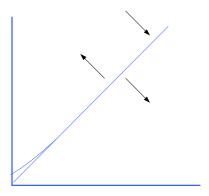


Figura 2.12 Característica de funcionamiento del relé de impedancia [2]

El relé se pondrá en trabajo para cualquier combinación de V e I representada por un punto arriba de la característica en la Región de par positivo, en otras palabras, para cualquier valor de Z menor que el valor constante representado por la característica de funcionamiento. Una forma mucho más útil de mostrar la característica de funcionamiento del relé de

distancia es por medio del tan conocido diagrama de impedancia o bien diagrama R-X el cual se muestra en la figura 2.13.

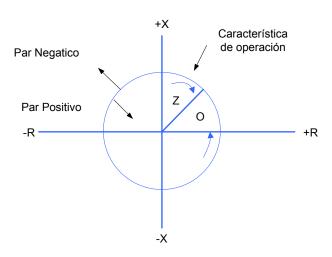


Figura 2.13 Característica de un relé de impedancia en R-X [2]

El valor numérico de la relación de V e I se muestra como la longitud de un radio vector, tal como Z y el ángulo de fase θ entre V e I determina la posición del vector. Si I está en fase con V el vector se sitúa a lo largo del eje +R; pero si I esta 180 fuera de fase con V el vector se localiza a lo largo del eje -R; si I se atrasa de V el vector tiene una componente +X y si I se adelanta de V el vector tiene una componente -X; ya que el funcionamiento del relé de impedancia es prácticamente o realmente independiente del ángulo de fase entre V e I, las características de funcionamiento es un circulo con su centro en el origen.

Cualquier valor de Z menor que el radio del circulo resultara en la producción de un par positivo y cualquier valor de Z mayor que este radio resultara en par negativo, haciendo caso omiso del ángulos de fase entre V e

I. En la figura 2.14 se muestra la aplicación de los relés de distancia para protección de líneas de transmisión.

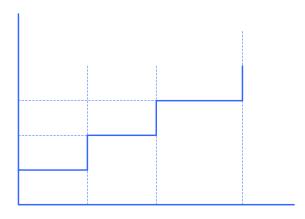


Figura 2.14 Tiempo de funcionamiento vs impedancia para un relé [2]

2.10.2 Relé de distancia del tipo reactancia

La unidad de reactancia de un relé de distance tiene, de hecho un elemento de sobrecorriente que desarrolla par positivo y un elemento direccional corriente-tensión que se opone o ayuda al elemento de sobrecorriente, según sea el ángulo de fase entre la cor \mathbf{n} e \mathbf{n} te y la tensión. En otras palabras un relé de reactancia es un relé de sobrecorriente con retención direccional. El elemento direccional está arreglado para desarrollar par máximo negativo cuando su corriente se atrasa de su tensión en 90°. Si dejamos que el efecto del resorte de control sea -K₃ la ecuación del par es:

$$T1$$
 $K_1 I^2 = K_2 V * I * sen \theta + K_3$
Ec. 2.4

Donde:

I: magnitud de la corriente eficaz [Amperios].

V: magnitud del voltaje eficaz [Voltios].

T: par neto [N.m]

K₁ y K₂: efecto de los resortes de los elementos de corriente y tensión respectivamente [Constantes].

K₃: efecto del resorte de control [Constante].

Θ: ángulo entre el voltaje y la corriente [Grados].

Dividiendo ambos lados de la ecuación entre l² tenemos:

$$K_1 = K_2 \frac{V}{I} * sen\theta + \frac{K_3}{I^2}$$
 Ec.2.5

O bien

$$Z * sen \theta_1 = X = \frac{K_1}{K_2} - \frac{K_3}{K_2 I^2}$$
 Ec.2.6

Si depreciamos el efecto del resorte de control:

$$X = \frac{K_1}{K_2} = Cons \tan te$$
 Ec.2.7

En otras palabras, este relé tiene una característica de funcionamiento tal que todos los radios vector de impedancia cuya punta se encuentra situada en esta característica, tiene una componente X constante. Esto se describe en la línea recta de la figura 2.15.

Esta característica es que la componente de resistencia de la impedancia no tiene efecto en el funcionamiento del relé; este responde solamente a la componente de reactancia. Cualquier punto debajo de la característica de funcionamiento sea arriba o abajo del eje R se situara en la Región de par positivo.

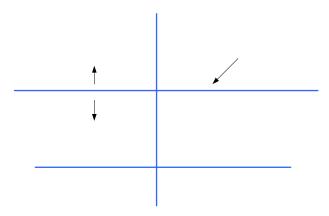


Figura 2.15 Característica de funcionamiento del relé de reactancia [2]

2.10.3 Relé de distancia del tipo admitancia (mho)

Este es un relé direccional con restricción de voltaje, el torque lo produce una unidad de dirección (voltaje-corriente) y se contrarresta con una unidad de voltaje, a esta unidad se la conoce también por unidad de arranque. Si dejamos que el efecto del resorte de control sea –K₃, el par de dicha unidad es:

Par Negatico

$$T = K_1 V I \cos(\theta - \tau) - K_2 V^2 - K_3$$
 Ec.2.8

Donde:

Par Positivo

I: magnitud de la corriente eficaz [Amperios].

V: magnitud del voltaje eficaz [Voltios].

T: par neto [N.m]

 K_1 y K_2 : efecto de los resortes de los elementos de corriente y tensión respectivamente [Constantes].

K₃: efecto del resorte de control [Constante].

Θ: ángulo entre el voltaje y la corriente [Grados].

ζ: ángulo de la unidad de direccionamiento [Grados].

Se definen como positivo cuando I se atrasa de V, En el punto de equilibrio el par neto es cero y de aquí:

$$K_2V^2 = K_1VI\cos(\theta - \tau) - K_3$$
 Ec.2.9

Dividiendo ambos lados entre K₂VI tenemos:

$$\frac{V}{I} = Z = \frac{K_1}{K_2} \cos(\theta - \tau) - \frac{K_3}{K_2 VI}$$
 Ec.2.10

Si despreciamos el efecto del resorte de control se tiene:

$$Z = \frac{K_1}{K_2} \cos(\theta - \tau)$$
 Ec.2.11

Se nota que esta ecuación no tiene término de tensión, y por esto el relé sigue solo una característica circular. Ver figura 2.16.

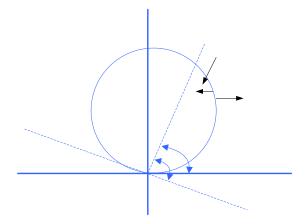


Figura 2.16 Característica de un relé direccional [2]

El diámetro de este círculo es prácticamente independiente de la tensión o la corriente, excepto a muy bajas magnitudes de tensión o corriente cuando se toma en cuenta el efecto del resorte de control, que origina que el diámetro disminuya. El relé de distancia del tipo admitancia (mho) completo tiene las características de funcionamiento mostradas en la figura 2.17.

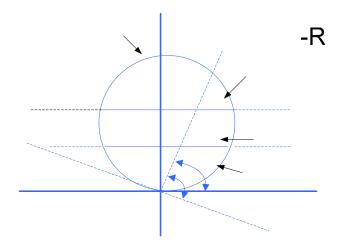


Figura 2.17 Características del relé de distancia del tipo admitancia [2]

Esta característica se obtiene por el arreglo de diversas unidades como las descritas para el relé de distancia del tipo de impedancia. Se observara aquí, sin embargo, que la unidad direccional o de arranque sirve de doble utilidad, ya que no solo proporciona la función direccional sino también el tercer escalón de la medición de distancia con discriminación direccional inherente. [2]

2.10.4 Relé de distancia del tipo cuadrilateral

La característica se muestra en la figura 2.18. Su lado superior forma un ángulo pequeño con el eje real y por tanto es semejante al relé tipo reactancia en cuanto a la tolerancia a la resistencia de falla; ese lado fija con precisión el alcance de cada zona.

Los lados derecho e izquierdo de la característica evitan la operación incorrecta por regímenes severos de carga o por oscilaciones de potencia. El lado inferior, que cruza por el origen y tiene cierta inclinación hacia el cuarto cuadrante, asegura la direccionalidad y la operación correcta del relé para cortocircuitos cercanos a través de arco. Un requerimiento importante de las características cuadrilaterales es que exista la posibilidad de ajustar cada lado en forma independiente.

Además de las características descritas existen otras, compuestas por combinaciones de circunferencias y líneas rectas, que tienen por objetivo fundamental mejorar el desempeño del relé. Algunas de estas características son la tipo lenticular, la tipo 8 entre otras. [5]

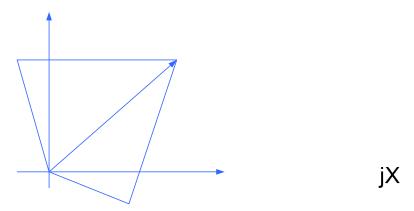


Figura 2.18 Característica cuadrilateral del relé de distancia [5]

2.11 FACTORES QUE AFECTAN LA MEDICIÓN

La impedancia medida por un relé de distancia en cualquier condición, es el cociente del voltaje a la corriente aplicados al relé. Es deseable que en condiciones de falla, esa impedancia sea idéntica a la de la línea protegida, es decir, $Z_P = Z_L$, donde Z_P es la impedancia medida, y Z_L es la impedancia de la sección de línea comprendida entre el relé y la falla.

Los relés de distancia de fase son alimentados con voltajes y corrientes de conexión delta, de modo que Z_L es la impedancia de secuencia positiva de la línea, para fallas trifásicas o entre fases; los relés de distancia de protección contra fallas a tierra se alimentan con voltajes y corrientes de conexión estrella y tienen compensación de secuencia cero, por lo que, para fallas a tierra, Z_L será también la impedancia de secuencia positiva de la línea protegida.

Las corrientes de fuentes de generación conectadas entre el relé y la falla producen caídas de voltaje adicionales en el lazo de falla, lo que se

traduce en subalcance del relé. Esta es una de las causas más comunes de error en la medición de impedancia.

La consideración $Z_P = Z_L$ implica que la falla es sólida, lo que constituye un caso excepcional en un sistema eléctrico de potencia. La presencia de resistencia de falla afecta la impedancia medida por la protección, que resulta:

$$Z_{P} = Z_{L} + R_{F}$$
 Ec.2.12

Además, $Z_P = Z_L$ solo se cumple cuando la corriente que pasa por la protección es igual a la corriente que circula por la falla. Esta es también una condición excepcional; la existencia de corrientes que circulan por la falla y no por la protección, o viceversa, constituye una fuente adicional de error en la medición de impedancia. Otra causa de error en la medición de impedancia es el acoplamiento mutuo entre conductores adyacentes, que pueden pertenecer a la misma o a diferentes líneas.

A continuación se presenta el análisis de la medición de impedancia por los relés de distancia considerando los efectos de fuente intermedia y de resistencia de falla, que son de gran importancia en el cálculo de sus parámetros de ajuste.

2.11.1 Efecto de Fuente Intermedia

Cuando una fuente de corriente de falla se encuentra dentro de la zona de operación de un relé de distancia, el alcance de éste resulta disminuido en forma variable, en dependencia de la magnitud de la corriente de la fuente intermedia. Este efecto, conocido como fuente intermedia positiva (o infeed), se puede observar en la figura 2.19, donde se presenta la situación de que existe una trayectoria de corriente hacia la falla proveniente de la fuente conectada en la barra B y que no circula por la protección en A. Al ocurrir una falla en la barra C, el voltaje medido por la protección A es igual a la caída de voltaje en la línea AB más la caída de voltaje en la línea BC, o sea:

$$V_{PA} = V_A = I_{AB} \times Z_{AB} + I_{BC} \times Z_{BC}$$
 Ec.2.13

La impedancia medida por la protección A está dada por:

$$Z_{PA} = \frac{V_{PA}}{I_{PA}} = \frac{V_{A}}{I_{AB}} = \frac{I_{AB} \times Z_{AB} + I_{BC} \times Z_{BC}}{I_{AB}} = Z_{AB} + \frac{I_{BC}}{I_{AB}} \times Z_{BC}$$

$$Z_{PA} = Z_{AB} + K_{CBC} \times Z_{BC}$$
 Ec.2.14

Donde k_{CBC} es el factor de distribución de corrientes, definido como:

$$K_{CBC} = \frac{I_{BC}}{I_{AB}}$$
 Ec.2.15

Cuando no existe la fuente de generación en la barra B, se tiene la situación de que $I_{AB} = I_{BC}$, por lo que la impedancia medida por la protección A es $Z_{AB} + Z_{BC}$.

Del análisis se puede observar que cuando no existe efecto de fuente intermedia, la impedancia medida por la protección A es la impedancia real que existe desde la protección hasta el punto donde está la falla. A medida

que el efecto de fuente intermedia se incrementa, haciendo que $I_{AB} < I_{BC}$, el término correspondiente a la impedancia Z_{BC} se ve incrementado por el factor k_{CBC} . Como la impedancia medida por la protección es mayor que la impedancia que existe hasta el punto de falla, el alcance del relé disminuirá.

Si el relé está ajustado para alcanzar exactamente hasta C sin fuente intermedia (es decir, $Z_{AB} + Z_{BC}$), cuando esta está presente su alcance se reduce, y deja de cubrir parte de la línea BC. Es decir, el efecto de fuente intermedia origina subalcance en la protección de distancia.

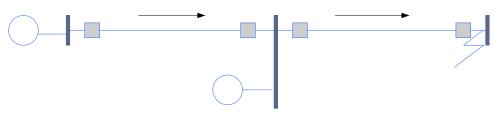
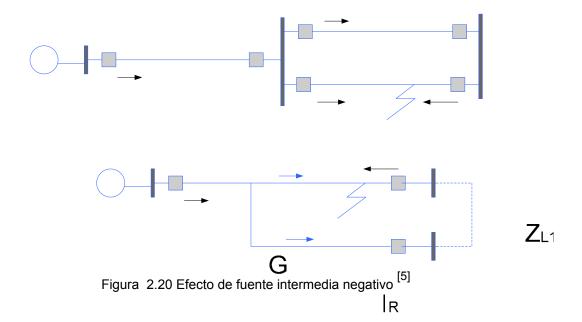



Figura 2.19 Efecto de fuentes intermedia positivo [5]

Por el contrario, si se ajusta la protección de A de modo que alcance hasta C con la fuente intermedia presente; cuando esta no existe el relé sobrepasa la barra C, y penetra en la línea adyacente.

En caso de que la corriente que circula por la protección sea mayor que la corriente total de falla, también se presenta un efecto de fuente intermedia, pero negativo (outfeed); en la figura 2.20 se muestran dos configuraciones típicas donde se presenta este efecto. Se puede demostrar que el efecto de fuente intermedia negativo provoca un sobrealcance en la protección de distancia.

 G

2.11.2 Resistencia de Falla

Los relé de distancia de fase de líneas largas son poco afectados por la resistencia de falla, pues esta está solo compuesta por la resistencia del arco entre los conductores de fase, que no tiene un valor muy elevado. Una condición semejante ocurre para fallas a tierra en líneas con hilo de tierra y buenas conexiones de las bases de los aisladores a dicheconductor de tierra. En líneas que no cumplen con esas condiciones, la resistencia de falla a tierra incluye las resistencias de tierra y de contacto entre la estructura y tierra, por lo que puede tener valores altos e incluso ser de naturaleza no lineal.

En forma general, la resistencia de falla es resistiva, y tiende a producir subalcance en relé con características circulares. Sin embargo, la alimentación de corriente al arco desde el otro extremo del sistema puede hacer aparecer componentes reactivas en la resistencia de falla vista por el relé, por lo que aún los relés del tipo reactancia pueden ser afectados. Para

analizar el efecto de la resistencia de falla, considérese el circuito equivalente representado en la figura 2.21 si no existe generación en el extremo B, la impedancia medida por la protección es $Z_L + R_F$. Sin embargo, cuando existe una fuente de generación en el extremo B, la impedancia medida por la protección será:

$$Z_{PA} = \frac{V_{PA}}{I_{PA}} = \frac{V_{A}}{I_{A}} = \frac{I_{A} \times Z_{L} + I_{F} \times R_{F}}{I_{A}} = Z_{L} + \frac{I_{A} + I_{B}}{I_{A}} \times R_{F}$$
 Ec.2.16

$$Z_{PA} = Z_L + R_L \times (1 + \frac{I_B}{I_A})$$
 Ec.2.17

$$Z_{PA} = Z_L + K_{CF} \times R_L$$
 Ec.2.18

Donde k_{CF} = $(1+l_B/l_A)$ es un número complejo, cuyo ángulo depende del desfasamiento entre E_A y E_B al ocurrir la falla, de las relaciones Z_A / Z_L y Z_B / Z_L , que a su vez son números complejos, y de la posición de la falla. Si antes de ocurrir la falla no había transferencia de potencia en el sistema, es decir, E_A y E_B están en fase, el que k_{CF} tenga parte imaginaria depende de las relaciones X/R de las impedancias Z_A , Z_L y Z_B . En un sistema homogéneo, k_{CF} es un número real, el relé detecta la impedancia de falla como resistiva pura. En el caso más general de un sistema no homogéneo, si Z_A y Z_B tienen ángulos menores que el de Z_L , puede haber problemas.

En este caso, cuando Z_L tiene un valor apreciable (una falla en el extremo de una línea relativamente larga), la corriente del relé está adelantada con relación a la de falla. Por tanto, la corriente del relé también está adelantada con relación al voltaje a través de la impedancia de falla, y el

relé mide una cierta reactancia capacitiva en el arco, que se resta de la reactancia inductiva de la línea y provoca sobrealcance en el relé. Este sobrealcance, que solo resulta apreciable en líneas largas, hace recomendable ajustar los relés tipo reactancia al 80% de la longitud de la línea como máximo. En el caso más común en que los ángulos de Z_A y Z_B son mayores que el ángulo de Z_L , la impedancia aparente de falla tiene cierta componente inductiva, y los relés tienen tendencia al subalcance. [5]



Figura 2.21 Efecto de la resistencia de falla en los relés de distancia ^[5]

2.11.3 Longitud de la línea

Las líneas de transmisión pueden ser definidas o clasificadas como cortas, medias o largas. Esta clasificación no depende únicamente de la longitud de la línea sino también del nivel de tensión de la línea, el cual a su vez tiene un efecto muy importante en el SIR de la línea. El SIR es la relación

entre la impedancia de la fuente situada detrás de la protección de la línea y la impedancia de la línea (SIR = ZG/ZL).

Normalmente, para una longitud de línea dada, la impedancia en por unidad (P.U.) varía mucho más con el voltaje nominal que la impedancia en Ohm. Este factor conjuntamente con las diferentes impedancias de cortocircuito a niveles de voltaje diferentes, muestran que el voltaje nominal de una línea tiene un efecto significativo en el SIR de la línea.

En conclusión, la línea se debe clasificar como corta, media o larga según el valor del SIR y no solamente según su longitud. De acuerdo a lo anterior, las líneas se clasifican así:

- Líneas Cortas: aquellas cuyo SIR es mayor o igual 4.
- Líneas Medias: aquellas cuyo SIR está entre 0.5 y 4.
- Líneas Largas: aquellas que tienen un SIR menor o igual a 0.5. [6]

CAPITULO 3

DESCRIPCION DEL SISTEMA DE TRANSION A NIVEL DE 115kV

3.1 UBICACIÓN GEOGRÁFICA

El estudio de las protecciones de distancia se realizara en la zona Oriental en todas las líneas de las subestaciones de 115kV alimentadas por una subestación de 230/115kV pertenecientes a CADAFE que se encuentran en los estados Sucre, Monagas, Anzoátegui, encontrándose una en el estado Delta Amacuro y Parte del estado Bolívar abarcando un área geográfica de 364.782 Km².

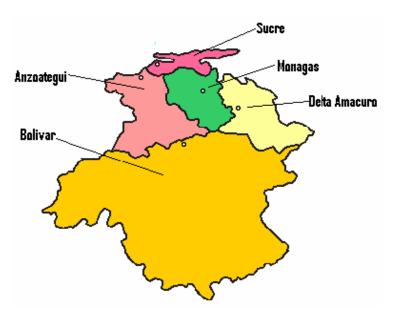


Figura 3.1 Mapa de los estados de las subestaciones en estudio

3.2 ESTADO SUCRE

Estado de Venezuela perteneciente a la Región Nororiental. Limita al oeste y al norte con el mar Caribe, al este con el golfo de Paria y al sur con los estados de Monagas y Anzoátegui. Con una superficie de 11.800 km2, el relieve del estado está constituido por el macizo de Cumaná, sector oriental de la cordillera Caribe. En este estado se encuentran 11 subestaciones distribuidas a lo largo del territorio.

Figura 3.2 Ubicación de las subestaciones en el estado Sucre

3.2.1 S/E Casanay

Pertenece al sistema Troncal de Transmisión Oriental asociado al Sistema Interconectado Nacional que suministra los bloques de energía a la Región 1 de CADAFE y a SENECA, es la única subestación de 230kV del estado Sucre, y su esquema operativo es de barra principal y barra de transferencia, tiene seis salidas de línea de 115kV, una hacia la subestación

Cariaco, una hacia la subestación Cumana II, dos hacia la subestación Carúpano y dos hacia la subestación Chacopata, ver anexo figura A.2.

3.2.2 S/E Guiria

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene una salida de línea de 115kV hacia la subestación Irapa, esta subestación es de esquema de barra simple, ver anexo figura A.3.

3.2.3 S/E Irapa

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, una hacia la subestación Carúpano y una hacia la subestación Guiria, esta subestación es de esquema de barra simple, ver anexo figura A.4.

3.2.4 S/E Carúpano

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene tres salidas de líneas de 115kV, dos hacia la subestación Casanay y una de la subestación Irapa, esta subestación es de esquema de barra principal y barra de transferencia, ver anexo figura A.5.

3.2.5 S/E Cariaco

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, una hacia la subestación Casanay y otra

hacia la subestación Cumana II, esta subestación es de esquema de barra simple, ver anexo figura A.6.

3.2.6 S/E Manzanares

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, una hacia las subestaciones Cumana II y la otra hacia la subestación Cumana III, esta subestación es de esquema de barra simple, ver anexo figura A.7.

3.2.7 S/E Cumana III

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, una hacia la subestación Cumana II y la otra hacia la subestación Manzanares, esta subestación es de esquema de barra simple seccionada por un disyuntor, ver anexo figura A.8.

3.2.8 S/E Tres Picos

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, ambas hacia la subestación Cumana II, esta subestación es de esquema de barra simple, ver anexo figura A.9.

3.2.9 S/E Santa Fe

Pertenece al sistema de transmisión de la Región 1 de CADAFE, su esquema es de barra simple y está conectada en T-off de línea a 115kV Guanta II-Cumana II, ver anexo figura A.10.

3.2.10 S/E Cumana II

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene ocho salidas de líneas de 115kV, una hacia la subestación Bordones, la subestación Casanay, la subestación Guanta II, la subestación Cariaco, la subestación Manzanares, la subestación Cumana III y dos líneas hacia la subestación Tres Picos; esta subestación es de esquema de barra principal y barra de transferencia, ver anexo figura A.11.

3.2.11 S/E Bordones

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, una hacia la subestación Guanta I y la otra hacia la subestación Cumana II, esta subestación es de esquema de barra simple, ver anexo figura A.12.

3.3 ESTADO ANZOÁTEGUI

Estado de Venezuela situado en la Región Nororiental. Su territorio está comprendido entre los estados de Monagas y Sucre al este, Bolívar al sur, Guárico al oeste y Miranda al noroeste; limita al norte con el mar Caribe y abarca una superficie de 43.300 km². Se encuentran 23 subestaciones de 115kV distribuidas a lo largo del estado.

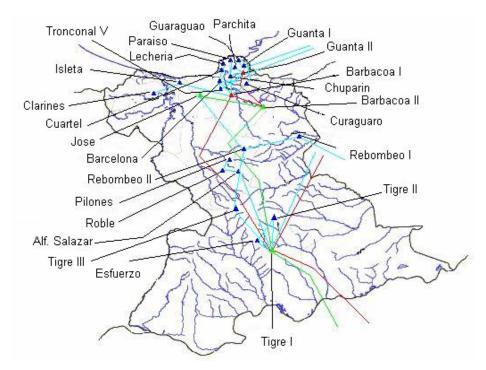


Figura 3.3 Ubicación de las subestaciones en el estado Anzoátegui

3.3.1 S/E Guanta II

Es una de las subestaciones de 230kV del estado Anzoátegui, asociada al sistema Troncal de Transmisión Oriental que cierra un anillo de 230kV en el mencionado sistema que mejorando la confiabilidad y los perfiles de tensión a este nivel de transmisión, suministrando bloques de energía a la Región 1, esta subestación es de esquema de barra principal y barra de transferencia, tiene seis salidas de líneas de 115kV, dos hacia la subestación Guanta I, dos hacia la subestación Chuparín, una hacia la subestación Cumana II y una hacia la subestación Barcelona, ver anexo figura A.13.

3.3.2 S/E Guanta I

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene cuatro salida de línea de 115kV hacia la subestación Guaraguao, la subestación Bordones y dos líneas hacia la subestación Guanta II, esta subestación es de esquema de barra simple, ver anexo figura A.14.

3.3.3 S/E Guaraguao

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, una hacia la subestación guanta I y la subestación Curaguaro, esta subestación es de esquema de barra simple, ver anexo figura A.15.

3.3.4 S/E Paraíso

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene una salida de línea de 115kV, hacia la subestación Chuparin, esta subestación es de esquema de barra simple, ver anexo figura A.16.

3.3.5 S/E Curaguaro

Pertenece a PDVSA y tiene dos salidas de líneas de 115kV, una hacia la subestación guaraguao y la subestación Barbacoa I, esta subestación es de un esquema de barra simple, ver anexo figura A.17.

3.3.6 S/E Chuparin

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene cuatro salidas de líneas de 115kV, una hacia la subestación el Paraíso, dos hacia la subestación Guanta II y la subestación Barbacoa I, esta subestación es de esquema de barra principal y barra de transferencia, ver anexo figura A.18.

3.3.7 S/E Parchitas

Pertenece a PDVSA y tiene dos salidas de líneas de 115kV, una hacia la subestación Barcelona y hacia la subestación Barbacoa I, esta subestación es de esquema de barra simple seccionada por un disyuntor, ver anexo figura A.19.

3.3.8 S/E Isleta

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, una hacia la subestación Clarines y hacia la subestación Barbacoa I, esta subestación es de esquema de barra simple, ver anexo figura A.20.

3.3.9 S/E Clarines

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene una salida de línea de 115kV, hacia la subestación la isleta, esta subestación es de esquema de barra simple, ver anexo figura A.21.

3.3.10 S/E Cuartel

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, una hacia la subestación Barcelona y hacia la subestación Lechería, esta subestación es de esquema de barra simple, ver anexo figura A.22.

3.3.11 S/E Lechería

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene una salida de línea de 115kV, hacia la subestación el Cuartel, esta subestación es de esquema de barra simple, ver anexo figura A.23.

3.3.12 S/E Barcelona

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene cuatro salidas de líneas de 115kV, una hacia la subestación el Cuartel, la subestación Parchita, la subestación Guanta II y la subestación Barbacoa I, esta subestación es de esquema de barra principal y barra de transferencia, ver anexo figura A.24.

3.3.13 S/E Esfuerzo

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, hacia la subestación Tigre I y hacia la subestación Tigre II, esta subestación es de esquema de barra simple, ver anexo figura A.25.

3.3.14 S/E Tronconal V

Pertenece al sistema de transmisión de la Región 1 de CADAFE, su esquema es de barra simple y está conectada en T-off de línea a 115kV Guanta II-Barcelona, ver anexo figura A.26.

3.3.15 S/E Barbacoa I

Es una de las primeras y más importantes subestaciones de 230kV del estado Anzoátegui, asociada al sistema Troncal de Transmisión Oriental perteneciente al Sistema Interconectado Nacional que suministra los bloques de energía a la Región 1, esta subestación es de esquema de barra principal y barra de transferencia, tiene cinco salidas de líneas de 115kV, hacia la subestación Curaguaro, hacia la subestación Chuparin, hacia la subestación Parchita, hacia la subestación Barcelona y hacia la subestación la Isleta, ver anexo figura A.28.

3.3.16 S/E Pilones

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene una salida de línea de 115kV, hacia la subestación los Robles, esta subestación es de esquema de barra simple, ver anexo figura A.29.

3.3.17 S/E Los Robles

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, hacia la subestación Anaco y la subestación

los Pilones, esta subestación es de esquema de barra simple, ver anexo figura A.30.

3.3.18 S/E Alfredo Salazar

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene cinco salidas de líneas de 115kV, hacia la subestación Rebombeo II, la subestación el Roble, la subestación Santa Rosa, la subestación Tigre III y la subestación Tigre I, esta subestación es de esquema de barra principal y barra de transferencia, ver anexo figura A.31.

3.3.19 S/E Rebombeo I

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, una hacia la subestación Rebombeo II y hacia la subestación Travieso, esta subestación es de esquema de barra simple seccionada por un disyuntor, ver anexo figura A.32.

3.3.20 S/E Rebombeo II

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene cuatro salidas de líneas de 115kV, hacia la subestación Rebombeo I, la subestación Anaco, la subestación Santa Rosa y la subestación Bitor; esta subestación es de esquema de barra simple seccionada por un disyuntor, ver anexo figura A.33.

3.3.21 S/E Tigre II

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene tres salidas de líneas de 115kV, hacia la subestación Tigre I, la subestación el Esfuerzo y la subestación Santa Bárbara; esta subestación es de esquema de barra principal y barra de transferencia, ver anexo figura A.34.

3.3.22 S/E Tigre III

Pertenece al sistema de transmisión de la Región 1 de CADAFE, tiene dos salidas de líneas de 115kV, hacia la subestación Anaco y hacia la subestación Barbacoa I, esta subestación es de esquema de barra simple, ver anexo figura A.35.

3.3.23 S/E Tigre I

Es una de las primeras y más importantes subestaciones 400/230/115kV del estado Anzoátegui, asociada al sistema Troncal de Transmisión Oriental perteneciente al Sistema Interconectado Nacional, esta subestación esta divida en dos patios de los cuales el de 230kV, manejado por CADAFE, es de esquema de barra principal y barra de transferencia, tiene cuatro salidas de líneas de 115kV, hacia la subestación Tigre II, hacia la subestación el Esfuerzo, hacia la subestación Tigre III y hacia la subestación Anaco, ver anexo figura A.36.

3.4 ESTADO MONAGAS

El Estado Monagas está situado en el oriente de Venezuela y linda por el Norte con el Estado Sucre; por el Nordeste con el Golfo de Paria; por el Este con el Delta del Orinoco; por el Sur, con el río Orinoco y el Estado Anzoátegui y por el Oeste con el Estado Anzoátegui. El Estado Monagas tiene una superficie de 28.900 km² aproximadamente. Se encuentran 10 subestaciones de 115kV distribuidas a lo largo del estado.

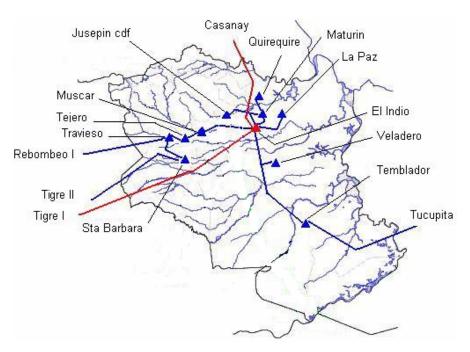


Figura 3.4 Ubicación de las subestaciones en el estado Monagas

3.4.1 S/E El Indio

Es una de las subestaciones de 230kV del estado Monagas, asociada al sistema Troncal de Transmisión Oriental perteneciente al Sistema Interconectado Nacional y suministra los bloques de energía para la Región 2 de CADAFE, esta subestación es de esquema de barra principal y barra de

transferencia, tiene ocho salidas de líneas de 115kV, dos hacia la subestación la Paz, dos hacia la subestación Maturín, dos hacia la subestación Temblador, una hacia la subestación Jusepín y una hacia la subestación Muscar, ver anexo figura A.37.

3.4.2 S/E Travieso

Pertenece al sistema de transmisión de la Región 2 de CADAFE, tiene cuatro salidas de líneas de 115kV, hacia la subestación Tejero, la subestación Amana, la subestación Santa Bárbara y la subestación Rebombeo I, esta subestación es de esquema de barra simple seccionada por un disyuntor, ver anexo figura A.38.

3.4.3 S/E Muscar

Pertenece al sistema de transmisión de la Región 2 de CADAFE, tiene tres salidas de líneas de 115kV, hacia la subestación Tejero, la subestación El Indio y la subestación Amana, esta subestación es de esquema de barra simple seccionada por un disyuntor, ver anexo figura A.39.

3.4.4 S/E Tejero

Pertenece al sistema de transmisión de la Región 2 de CADAFE, tiene dos salidas de líneas de 115kV, hacia la subestación Travieso y la subestación Muscar, esta subestación es de esquema de barra simple seccionada por un disyuntor, ver anexo figura A.40.

3.4.5 S/E Santa Bárbara

Pertenece al sistema de transmisión de la Región 2 de CADAFE, tiene dos salidas de líneas de 115kV, hacia la subestación Travieso y la subestación Tigre II, esta subestación es de esquema de barra simple seccionada por un disyuntor, ver anexo figura A.41.

3.4.6 S/E Quiriquire

Pertenece al sistema de transmisión de la Región 2 de CADAFE, tiene dos salidas de líneas de 115kV, hacia la subestación Maturín y la subestación Boulevard, esta subestación es de esquema de barra simple, ver anexo figura A.42.

3.4.7 S/E Temblador

Pertenece al sistema de transmisión de la Región 2 de CADAFE, tiene cuatro salidas de líneas de 115kV, hacia la subestación el indio, hacia la subestación Tucupita y hacia la subestación Pdvsa Temblador, esta subestación es de esquema de barra principal y barra de transferencia, ver anexo figura A.43.

3.4.8 S/E Maturín

Pertenece al sistema de transmisión de la Región 2 de CADAFE, tiene cinco salidas de líneas de 115kV, hacia la subestación el indio, hacia la subestación Boulevard, hacia la subestación Jusepín y hacia la subestación

Quirequire, esta subestación es de esquema de barra principal y barra de transferencia, ver anexo figura A.44.

3.4.9 S/E La Paz

Pertenece al sistema de transmisión de la Región 2 de CADAFE, tiene dos salidas de líneas de 115kV, hacia la subestación El Indio, esta subestación es de esquema de barra simple seccionada por un disyuntor, ver anexo figura A.45.

3.4.10 S/E Boulevard

Pertenece al sistema de transmisión de la Región 2 de CADAFE, tiene dos salidas de líneas de 115kV, hacia la subestación Maturín y la subestación Quirequire, esta subestación es de esquema de barra simple, ver anexo figura A.46.

3.4.11 S/E Jusepín

Pertenece al sistema de transmisión de la Región 2 de CADAFE, tiene tres salidas de líneas de 115kV, hacia la subestación Maturín, subestación el Indio y subestación Jusepín II pdvsa, esta subestación es de esquema de barra simple seccionada por un disyuntor, ver anexo figura A.47.

3.4.12 S/E Veladero

Pertenece al sistema de transmisión de la Región 2 de CADAFE, tiene dos salidas de líneas de 115kV, esta subestación está conectada en T-off de

la línea uno Indio-Temblador y/o a la línea dos Indio-Temblador, esta de esquema de barra simple, ver anexo figura A.48.

3.5 ESTADO DELTA AMACURO

Ésta ubicado al este de Venezuela, limita al norte y al este con el océano atlántico; al sureste con la República de Guyana; al sur con el Estado Bolívar; y al oeste con el Estado Monagas. Los 40.240 km² del delta están formados por selvas pantanosas y mangle. Se encuentra solo una subestación de 115kV en el estado.

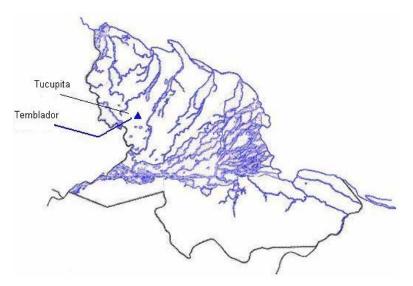


Figura 3.5 Ubicación de las subestación en el estado Delta Amacuro

3.5.1 S/E Tucupita

Está localizada en las cercanías de la ciudad de Tucupita, capital del estado Delta Amacuro, en la Región del macizo Guayanés del país, a unos cinco metros sobre el nivel del mar, es la única subestación de 115kV a lo largo del estado. Pertenece al Sistema de Transmisión de la Región 2 de

CADAFE, esta subestación es de esquema de barra simple tiene una salida de línea de 115kV hacia la subestación Temblador, ver anexo figura A.49.

3.6 ESTADO BOLÍVAR

El estado Bolívar está situado al sudeste de Venezuela; limita por el norte y por el Oeste con el río Orinoco, que lo separa de los estados Anzoátegui, Guárico y Apure; por el sur con el estado Amazonas y con Brasil; por el Este, con la Guayana Inglesa y por el Nordeste con el estado Delta Amacuro. La superficie del Estado Bolívar es aprox. 238.000 km². Se encuentran dos subestación de 115kV para nuestro caso de estudio.

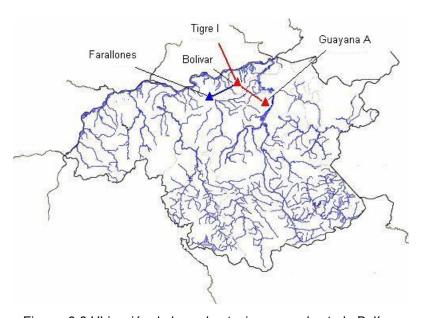


Figura 3.6 Ubicación de las subestaciones en el estado Bolívar

3.6.1 S/E Bolívar

Es una de las subestaciones de 230kV del estado Bolívar asociada al sistema Troncal de Transmisión Oriental perteneciente al Sistema

Interconectado Nacional y suple los bloques de energía a la Región 8 de CADAFE, esta subestación es de esquema de barra principal y barra de transferencia, tiene dos salidas de líneas de 115kV hacia la subestación Farallones, ver anexo figura A.51.

3.6.2 S/E Farallones

Pertenece al sistema de transmisión de la Región 8 de CADAFE, tiene dos salidas de líneas de 115kV, hacia la subestación Bolívar, esta subestación es de esquema de barra simple seccionada por un disyuntor, ver anexo figura A.52.

3.7 CARACTERÍSTICAS DE LAS LÍNEAS DE TRANSMISIÓN

Tabla 3.1 Características de las líneas del estado Sucre

RELAC DE TO		NOMBRE	RELACION DE TC's /		Tipo	CALIBRE	lmax [A]	CAPACIDAD TERMICA (A) 75 °C (TABLA)	FACTOR DE CARGA (%) TC's	FACTOR DE CARGA (%) CONDUCTOR
300	5	CASANAY/- CARUPANO L1	300	5	ACSR	4	240	298	80	81
300	5	CUMANA II - CARIACO	300	5	ACSR	336.4	130	443	43	29
400	5	CUMANA II -TRES PICOS L1	384	5	ACSR	336.4	310	443	40	35
400	5	CUMANA II -TRES PICOS L2	416	5	ACSR	336.4	310	443	37	35
300	5	CARUPANO - IRAPA	300	5	ACAR	350	190	465	63	41
600	5	CASANAY - CARIACO	600	5	ACSR	4	280	298	47	94
300	5	CASANAY - CARUPANO L2	300	5	ACAR	350	280	465	93	60
300	5	CASANAY - CUMANA II	300	5	ACAR	350	260	465	87	56
200	5	IRAPA - GUIRIA	200	5	ACAR	350	100	465	50	22
500	5	CASANAY-CHACOPATA L1y L2	500	5	ACAR	500	400	577	40	35
600	5	CUMANA II - CUMANA III	600	5	ACAR	500	250	577	21	22
600	5	CUMANA II - BORDONES	600	5	ACAR	336.4	170	577	28	29
600	5	CUMANA II - MANZANARES	600	5	ACAR	500	170	577	28	29
600	5	CUMANA III - MANZANARES	600	5	ACAR	500	20	577	3	3

Tabla 3.2 Características de las líneas del estado Anzoátegui

								_		
RELACI DE TC /	-	NOMBRE	RELAC DE TO		Tipo	CALIBRE	lmax [A]	CAPACIDAD TERMICA (A) 75 °C (TABLA)	FACTOR DE CARGA (%) TC's	FACTOR DE CARGA (%) CONDUCTOR
500	5	CHUPARIN - GUANTA II L1	500	1	ACSR	336.4	250	443	56	50
500	5	CHUPARIN - GUANTA II L2	500	1	ACSR	336.4	250	443	56	50
600	5	GUANTA - GUANTA II L1	600	1	ACSR	336.4	120	443	27	20
600	5	GUANTA - GUANTA II L2	600	1	ACSR	336.4	270	443	61	45
600	1	GUANTA II - CUMANA II	600	5	ACSR	336.4	290	443	65	48
500	5	GUARAGUAO - GUANTA I	500	5	ACSR	336.4	210	443	47	42
500	5	BARBACOA I - ISLETAS	500	5	ACAR	350	292	465	63	58
600	5	BARCELONA - CUARTEL	600	5	ACAR	350	557	465	120	93
500	5	BARBACCURAG GUARAG.	500	5	ACAR	350	130	465	28	26
500	5	BARBACOA I - CHUPARIN	500	5	ACAR	350	260	465	56	52
600	5	CUARTEL - LECHERIA	600	5	ACAR	350	150	465	32	25
600	5	BARCE TRONC V - GUANT II	600	1	ACAR	350	310	465	67	52
300	5	CHUPARIN - PARAISO	300	5	ACAR	350	180	465	39	60
750	1	A. SALAZAR - EL ROBLE	750	1	ACAR	350	650	465	140	87
465	5	EL ROBLE - PILONES	465	5	ACAR	350	70	465	15	15
300	5	ISLETAS - CLARINES	300	5	ACAR	350	140	465	30	47
600	5	TIGRE I - A. SALAZAR	600	5	ACAR	350	210	465	45	35
600	5	TIGRE I - TIGRE II	600	5	ACAR	350	330	465	71	55
600	5	TIGRE I - EL ESFUERZO	600	5	ACAR	350	270	465	58	45
600	5	EL ESFUERZO - TIGRE II	600	5	ACAR	350	180	465	39	30
600	5	TIGRE I - TIGRE III	600	5	ACAR	350	440	465	95	73
500	5	TIGRE III - A. SALAZAR	500	5	ACAR	350	180	465	39	36
500	5	TIGRE II - SANTA BARBARA	500	5	ARVID	394.5	30	466	6	6
600	5	BARBACOA I - BARCELONA	600	5	ACAR	500	400	577	69	67
1000	1	BARBACOA I - PARCHITA	600	5	ACAR	500	390	577	68	39
600	5	BARCELONA - PARCHITA	600	5	ACAR	500	370	577	64	62
600	5	REBOMBEO I - REBOMBEO II	600	5	ACAR	500	140	577	24	23
600	5	REBOMBEO II - A. SALAZAR	600	5	ACAR	500	90	577	16	15

Tabla 3.3 Características de las líneas del estado Monagas

RELAC DE TO	-	NOMBRE	RELACION DE TC's /		Tipo	CALIBRE	lmax [A]	CAPACIDAD TERMICA (A) 75 °C (TABLA)	FACTOR DE CARGA (%) TC's	FACTOR DE CARGA (%) CONDUCTOR
300	5	TEMBLADOR - TUCUPITA	300	5	ACSR	4	210	298	70	70
500	5	INDIO - MUSCAR	600	5	ACSR	350	220	465	47	44
500	5	TEJERO - MUSCAR	500	5	ACSR	350	330	465	71	66
600	5	TEJERO - TRAVIESO	600	5	ACSR	350	70	465	15	12
300	5	INDIO - JUSEPIN	300	5	ACAR	350	170	465	37	57
500	5	INDIO - MATURIN L1	600	5	ACAR	350	210	465	45	42

300	5	INDIO - MATURIN L2	600	5	ACAR	350	210	465	45	70
300	5	INDIO - TEMBLADOR L1y L2	300	5	ACAR	350	60	465	13	20
300	5	INDIO - VELADERO	300	5	ACAR	350	70	465	15	23
300	5	MATURIN - JUSEPIN	300	5	ACAR	350	190	465	41	63
500	1	INDIO - LA PAZ L1	500	1	ACAR	500	205	577	36	41
500	5	INDIO - LA PAZ L2	300	5	ACAR	500	205	577	36	41
300	5	MATURIN – BOULEVARD	600	5	ACAR	500	200	577	35	67
300	5	MATURIN – QUIRIQUIRE	500	5	ACAR	500	100	577	17	33
500	5	QUIRIQUIRE - BOULEVARD	500	5	ACAR	500	10	577	2	2
600	5	TRAVIESO - REBOMBEO I	600	5	ACAR	500	140	577	24	23
750	5	TEMBLADOR - PDVSA	750	5	ACAR	500	210	577	36	28
600	5	TRAVIESO - SANTA BARBARA	600	5	ACAR	500	30	577	5	5

Tabla 3.4 Características de las líneas del estado Bolívar

RELACI DE TO		NOMBRE	RELACI DE TO		Tipo	CALIBRE	lmax [A]	CAPACIDAD TERMICA (A) 75 °C (TABLA)	FACTOR DE CARGA (%) TC's	FACTOR DE CARGA (%) CONDUCTOR
500	1	BOLIVAR - FARALLONES L1	750	1	ACAR	500	338	577	59	68
500	1	BOLIVAR - FARALLONES L2	750	1	ACAR	500	417	577	72	83

3.8 IMPEDANCIAS DE LAS LÍNEAS DE TRANSMISIÓN

Tabla 3.5 Impedancia de las líneas del estado Monagas

Terminal i	Terminal j	Lín.Par.	Long.	R1	X1	C1	R0	X0	C0
Barras	Barras	LIII.I ai.	km	Ohm	Ohm	uF	Ohm	Ohm	uF
Boulevard	Quiriquire	1	21.00	2.59	9.75	4.21	9.23	28.63	2.43
El Indio	Jusepín	1	33.00	5.69	15.82	10.09	16.11	45.48	5.87
El Indio	La Paz	2	12.00	1.04	2.94	1.33	4.83	12.72	0.72
El Indio	Maturín	1	9.00	1.55	4.65	0.69	3.91	12.66	0.44
El Indio	Maturín	1	10.00	1.72	4.79	0.93	4.88	13.78	0.54
El Indio	Muscar	1	34.00	6.73	17.62	9.85	15.66	47.89	6.25
Maturín	Boulevard	1	13.00	1.61	6.04	1.61	5.71	17.72	0.93
Maturín	Jusepín	1	40.00	6.89	19.17	14.82	19.53	55.12	8.63
Maturín	Quiriquire	1	28.00	3.46	13.01	7.49	12.30	38.17	4.31
Sta Bárbara	Travieso	1	21.00	2.80	10.56	3.88	8.31	29.26	2.43
Tejero	Muscar	1	7.00	1.33	3.61	0.42	3.17	9.84	0.26
Temblador	Tucupita	1	98.00	25.48	51.64	80.34	51.22	138.89	51.33
Travieso	Rebombeo I	1	33.00	4.07	16.56	9.58	12.73	45.94	6.01
Travieso	Tejero	1	8.00	1.58	4.14	0.55	3.68	11.27	0.35
El Indio	Temblador	2	94.00	8.12	23.06	160.81	37.80	99.66	68.74

Tabla 3.6 Impedancia de las líneas del sur del estado Anzoátegui

Terminal i	Terminal j	Lín.Par.	Long.	R1	X1	C1	R0	X0	C0
Barras	Barras	LIII.Fai.	km	Ohm	Ohm	uF	Ohm	Ohm	uF
Anaco	El Roble	1	3.00	0.37	1.51	0.08	1.16	4.18	0.05
Anaco	El Tigre	1	82.00	14.10	42.36	57.47	35.64	115.37	36.43
Anaco	El Tigre III	1	73.00	12.56	37.71	45.54	31.73	102.70	28.87
Anaco	Rebombeo II	1	55.70	6.86	27.95	27.28	21.49	77.54	17.11
El Tigre II	El Esfuerzo	1	6.00	1.03	2.88	0.34	2.93	8.27	0.17
El Roble	Los Pilones	1	4.00	0.66	2.03	0.14	1.71	5.59	0.09
El Esfuerzo	El Tigre	1	6.00	1.03	2.88	0.34	2.93	8.27	0.17
El Tigre	El Tigre II	1	8.00	1.38	3.83	0.59	3.91	11.02	0.31
El Tigre	El Tigre III	1	9.70	1.67	5.01	0.80	4.22	13.65	0.51
El Tigre II	Sta Bárbara	1	107.00	18.40	55.28	97.85	46.50	150.54	62.03
Rebombeo I	Rebombeo II	1	64.50	7.95	32.37	36.58	24.89	89.79	22.95

Tabla 3.7 Impedancia de las líneas del norte del estado Anzoátegui

Terminal i	Terminal j	Lín.Par.	Long.	R1	X1	C1	R0	X0	C0
Barras	Barras	LIII.I ai.	km	Ohm	Ohm	uF	Ohm	Ohm	uF
Barbacoa	Curaguaro	1	22.30	3.84	10.69	4.61	10.89	30.73	2.68
Barbacoa	Isleta	1	47.00	8.08	24.28	18.88	20.43	66.12	11.97
Barbacoa	Barcelona	1	15.00	1.85	6.97	2.15	6.59	20.45	1.24
Barcelona	Cuartel	1	9.50	1.63	4.91	0.77	4.13	13.37	0.49
Barcelona	Parchita	1	6.00	0.73	2.79	0.34	2.64	8.18	0.20
Chuparín	Barbacoa	1	21.00	3.48	10.64	3.80	8.99	29.34	2.40
Chuparín	Guanta II	1	11.40	1.68	5.59	1.18	5.43	16.83	0.71
Chuparín	Guanta II	1	8.00	1.16	3.74	0.61	4.04	11.55	0.35
Chuparín	Paraíso	1	10.00	1.72	5.17	0.85	4.68	15.12	0.54
Cuartel	Lecherías	1	4.00	0.69	2.07	0.14	1.87	6.05	0.09
Guanta	Bordones	1	55.01	9.11	27.88	178.89	25.39	82.66	113.02
Curaguaro	Guaraguao	1	25.62	4.24	12.99	5.61	11.82	38.50	3.56
Guanta	Guanta II	1	8.90	1.31	4.16	0.74	4.52	12.85	0.46
Guanta	Guanta II	1	13.90	2.01	6.49	1.83	7.03	20.06	1.06
Guanta	Guaraguao	1	10.00	1.66	4.70	0.94	5.27	14.46	0.54
Guanta II	Barcelona	1	11.00	1.89	5.48	1.08	5.26	15.90	0.65
Guanta II	TOFF - Sta Fe	1	34.00	5.30	15.92	10.87	17.57	49.12	6.30
Isleta	Clarines	1	24.00	4.13	12.40	4.92	11.23	36.30	3.12
Parchita	Barbacoa 1	1	9.50	1.16	4.60	0.83	3.91	13.09	0.50
TOFF-Sta Fe	Santa Fé	1	0.30	0.05	0.15	0.001	0.14	0.45	0.0005

Tabla 3.8 Impedancia de las líneas del estado Sucre

Terminal i	Terminal j	Lín.Par.	Long.	R1	X1	C1	R0	X0	C0
Barras	Barras	LIII.I ai.	km	Ohm	Ohm	uF	Ohm	Ohm	uF
Cariaco	Cumaná II	1	68.00	11.26	34.47	39.89	31.38	102.18	25.20
Carúpano	Irapa	1	80.00	13.76	41.33	54.70	37.43	120.99	34.68
Casanay	Cariaco	1	7.00	1.59	3.80	0.41	3.66	10.77	0.26
Casanay	Carúpano	1	33.00	9.43	17.81	8.94	19.20	50.67	5.75
Casanay	Carúpano	1	33.00	5.68	17.05	9.31	15.44	49.91	5.90
Casanay	Chacopata	2	51.00	3.16	12.14	48.80	21.56	57.64	20.50
Casanay	Cumaná II	1	71.00	12.21	36.68	43.08	33.22	107.38	27.31
Cumaná II	Bordones	1	5.00	0.83	2.35	16.26	2.63	7.23	10.27
Cumaná II	Manzanares	1	10.50	1.30	4.88	1.05	5.09	15.13	0.61
Cumaná II	TOFF -Sta Fe	1	26.00	4.31	12.21	6.32	13.70	37.59	3.67
Cumaná II	Tres Picos	2	0.30	0.02	0.07	0.00	0.08	0.22	0.00
Cumaná III	Manzanares	1	6.00	0.74	2.79	0.34	2.91	8.64	0.20
Cumaná II	Cumaná III	1	7.00	0.86	3.25	0.47	3.39	10.08	0.27
Irapa	Guiria	1	31.00	5.33	16.01	8.21	14.50	46.88	5.21

Tabla 3.9 Impedancia de las líneas del estado Bolívar

Terminal i	Terminal j	Lín.Par.	Long.	R1	X1	C1	R0	X0	C0
Barras	Barras	LIII.Fai.	km	Ohm	Ohm	uF	Ohm	Ohm	uF
C. Bolívar	Farallones	1	41	4.965	20.3	14.923	12.96	45.19	8.642

3.9 CARGAS CONECTADAS A LAS BARRAS DE 115kV

Tabla 3.10 Cargas conectadas a las barras de 115kV

Nombre	Barras	p.u.	MW	Mvar	MVA
Chuparín 115	Chuparín 115	0.948	61	25.057	65.946
Clarines 115	Clarines 115	0.874	27	11.091	29.189
Cuartel 115	Cuartel 115	0.925	59	24.236	63.784
Curaguaro 115	Curaguaro 115	0.961	3.5	1.695	3.889
El Esfuerzo	El Esfuerzo	1.032	20	8.216	21.622
El Roble 115	El Roble 115	0.983	53	24.148	58.242
Guanta 115	Guanta 115	0.963	12	4.929	12.973
Guaraguao 115	Guaraguao 115	0.950	62	25.468	67.027
Isleta 115	Isleta 115	0.896	22	9.037	23.784
Lechería 115	Lecherías 115	0.922	29	11.912	31.351
Los Pilones 115	Los Pilones 115	0.981	21	6.000	21.840
Paraíso 115	Paraíso 115	0.934	45	18.485	48.649
Parchita 115	Parchita	0.958	2.4	0.986	2.595

Rebombeo I 115	Rebombeo I 115	0.992	9.34	3.837	10.097
Rebombeo II 115	Rebombeo II 115	0.992	6	2.465	6.486
Tigre II 115	El Tigre II 115	1.027	90	36.970	97.297
Tigre III 115	El Tigre III 115	1.023	50	20.539	54.054
Farallones 115	Farallones 115	0.896	111	50.573	121.978
Boulevard	Boulevard 115	0.938	44	18.074	47.568
Jusepín 115	Jusepín 115	1.003	12	4.929	12.973
La Paz 115	La Paz 115	0.955	40	16.431	43.243
Maturín 115	Maturín 115	0.953	14	5.751	15.135
Muscar 115	Muscar 115	1.008	2.6	1.068	2.811
Quiriquire 115	Quiriquire 115	0.924	32	13.145	34.595
Santa Bárbara 115	Santa Bárbara 115	0.999	11	4.519	11.892
Tejero 115	Tejero 115	0.998	52	21.360	56.216
Temblador 115	Temblador A 115	0.927	24	10.224	26.087
Travieso 115	Travieso 115	0.998	21	8.626	22.703
Tucupita 115	Tucupita 115	0.919	44	15.970	46.809
Veladero 115	El Indio 115	0.968	3	1.232	3.243
Bordones	Bordones 115	0.861	17	6.983	18.378
Cariaco 115	Cariaco 115	0.914	26	10.680	28.108
Carúpano 115	Carúpano 115	0.868	70	28.754	75.676
Cumaná III 115	Cumaná III 115	0.848	40	16.431	43.243
Guiria 115	Guiria 115	0.763	15	6.162	16.216
Irapa 115	Irapa 115	0.780	14	5.751	15.135
Manzanares	Manzanares	0.847	38	15.609	41.081
Santa Fé 115	Santa Fé 115	0.903	4	1.643	4.324
Tres Picos 115	Tres Picos 115	0.856	62	25.468	67.027

3.10 CARACTERÍSTICAS DE LOS TRANSFORMADORES

3.10.1 Transformadores del estado Sucre

Tabla 3.11 Transformadores de potencia de Sucre

S/E	TENSION kV	POTENCIA MVA	IMPEDANCIA %
	230/115	100	7.68
CASANAY	230/115	100	7.68
	230/115	100	7.4
	115/13.8	20	12.41
	115/13.8	20	12.27
	115/13.8	20	11.15
	115/34.5	16	9.59

	115/34.5	16	10.3
BORDONES	115/13.8	36	12.49
BONDONES	115/13.8	36	12.6
	115/13.8	36	9.75
CARUPANO	115/13.8	36	9.75
CAROFANO	115/34.5	20	9.7
	115/34.5	20	9.7
CARIACO	115/13.8	20	9.97
CANACO	115/34.5	20	10.01
GUIRIA	115/13.8	20	9.97
MANZANARES	115/13.8	30	9.85
MANZANANLO	115/13.8	30	9.85
IRAPA	115/13.8	20	9.97
CUMANA III	115/13.8	20	9.85
	115/13.8	20	9.85
	115/34.5	20	8.2
STA FE	115/13.8	10	8.5

3.10.2 Transformadores del estado Anzoátegui

Tabla 3.12 Transformadores de potencia de Anzoátegui norte

S/E	TENSION kV	POTENCIA MVA	IMPEDANCIA %
	230/115	200	7.41
_	230/115	100	7.22
BARBACOA	230/115	100	7.35
₽ ₽	230/115	200	8.07
AC AC	115/34.5	36	9.58
O _A	115/34.5	36	9.32
_	115/34.5	20	9.7
	115/34.5	10	9.7
CHUPARIN	115/13.8	36	9.68
CHO! AININ	115/13.8	36	11.5
	115/13.8	30	8.44
BARCELONA	115/13.8	30	10.28
DANCELONA	115/13.8	36	11.88
	115/13.8	36	12.78
	230/115	100	7.4
GUANTA II	230/115	100	7.4
	230/115	100	7.4
DADAISO	115/13.8	36	9.68
PARAISO	115/13.8	36	9.68

	115/13.8	6	6.3
	115/13.8	10	7.93
GUANTA I	115/13.8	10	7.93
	13.8/115	100	11.8
	13.8/115	100	11.8
ISLETA	115/13.8	20	9.28
ISLLIA	115/13.8	20	9.28
LECHERÍA	115/13.8	20	6.25
LLCHLINA	115/13.8	20	9.8
	115/13.8	30	10.1
CUARTEL	115/13.8	30	10.1
	115/13.8	20	10.1
	115/13.8	30	10.3
GUARAGUAO	115/13.8	30	13.4
	115/13.8	36	12.15
CLARINES	115/34.5	20	9.8
OLAMINES	115/13.8	20	12.6
TRONCONAL V	115/13.8	36	12.6
TRONCONAL V	115/13.8	36	12.6
PARCHITA	115/6.6	10	6.6
FARUIIIA	115/6.6	10	6.6

Tabla 3.13 Transformadores de potencia de Anzoátegui sur

S/E	TENSION kV	POTENCIA MVA	IMPEDANCIA %
	115/34.5	36	9.9
ROBLE	115/34.5	36	9.28
NOBEL	115/13.8	30	8.43
	115/13.8	30	9.83
TIGRE I	230/115	200	7.3
TIGILL	230/115	100	7.5
	115/13.8	36	10.02
	115/13.8	36	10.02
TIGRE II	115/34.5	20	6.09
	115/34.5	20	10
	115/34.5	10	11
TIGRE III	115/13.8	30	10.3
HOKE III	115/13.8	30	10.3
ESFUERZO	115/34.5	20	9.8
ESFUERZU	115/13.8	20	12.6
	13.8/115	100	11.83
ANACO	13.8/115	100	11.83
	13.8/115	100	11.61

PILONES	115/13.8	36	11
STA BARBARA	115/13.8	16	9.8
STA DANDANA	115/13.8	16	9.8
	115/13.8	20	9.81
REBOMBEO I	115/13.8	20	10
	115/13.8	20	9.81
REBOMBEO II	115/13.8	20	8.89

3.10.3 Transformadores del estado Monagas

Tabla 3.14 Transformadores de potencia de Monagas

S/E	TENSION kV	POTENCIA MVA	IMPEDANCIA %
	230/115	100	7.52
	230/115	100	7.49
匝	230/115	100	8.4
=	115/34.5	30	10.2
EL INDIC	115/34.5	30	10.2
0	115/13.8	24	9.54
	115/13.8	24	9.54
	115/13.8	16	8.18
	115/13.8	20	12.6
LA PAZ	115/13.8	20	12.6
LATAL	115/13.8	36	10.45
	115/34.5	24	10.45
BOULEVARD	115/13.8	36	11
BOOLLVAND	115/13.8	36	11
QUIREQUIRE	115/34.5	20	7.48
	115/34.5	20	10.98
JUSEPIN	115/13.8	16	9.8
	115/13.8	20	7.26
TEJERO	115/34.5	10	8.2
TEJERO	115/13.8	20	7.26
	115/34.5	20	7.48
TRAVIESO	115/13.8	26.6	10.2
TIVAVILOO	115/13.8	26.6	10.2
	115/13.8	20	9.45
MATURIN	115/13.8	20	10.7
WATOKIN	115/13.8	20	9.87
	115/13.8	20	7.26
MUSCAR	115/13.8	26	10.2
MOSCAIN	115/13.8	26	10.2

TEMBLAROR	115/34.5	10	8.2
	115/34.5	10	8.2
	115/34.5	10	8.2
VELADERO	115/34.5	20	9.7

3.10.4 Transformador del estado Delta Amacuro

Tabla 3.15 Transformadores de potencia de Delta Amacuro

S/E	TENSION kV	POTENCIA MVA	IMPEDANCIA %
TUCUPITA	115/13.8	36	9.75
	115/34.5	36	11.71
	115/13.8	36	9.75

3.10.5 Transformadores del estado Bolívar

Tabla 3.16 Transformadores de potencia de Bolívar

S/E	TENSION kV	POTENCIA MVA	IMPEDANCIA %
	230/115	100	7.31
BC	230/115	100	7.36
BOLIVAR	230/115	100	7.31
₹	115/34.5	20	9.43
Ħ	115/34.5	20	9.64
	115/34.5	30	10.01
П	115/34.5	36	11.71
¥	115/34.5	36	11.54
≨	115/13.8	20	9.8
Ę	115/34.5	36	10.49
FARALLONES	115/13.8	14	6.9
	115/34.5	30	10.01
S	115/34.5	30	10.01

CAPITULO 4

HERRAMIENTA COMPUTACIONAL DIGSILENT POWER FACTORY

4.1 MÓDULO DE CORTOCIRCUITO

Un cálculo de cortocircuito puede ser necesitado durante el diseño de un sistema de potencia, para dimensionar subestaciones, elegir topologías, equipos de la red, etc. Estos deben ser elegidos para funcionar correctamente en condiciones normales de operación y además ser capaces de soportar condiciones de falla en el sistema (cortocircuitos por ejemplo). Algunas aplicaciones típicas en Sistemas Eléctricos de Potencia son:

- Chequeo de la capacidad de resistencia térmica de los componentes del Sistema.
- Selección y ajuste de dispositivos de protección.
- Determinación de la resistencia mecánica de los elementos del sistema.
- Cálculo de fallas que deben ser comparadas con los rangos de interrupción de los disyuntores.
- Dimensionamiento de dispositivos de puesta a tierra para subestaciones.

El DIgSILENT ofrece los métodos de cálculo de corto circuito de acuerdo a las siguientes normas: Según VDE, Según IEC, Según ANSI, Completo (Para cálculo de fallas múltiples).

En el DIgSILENT un cálculo de cortocircuito puede ser realizado de varias formas, presionando el botón de cálculo de cortocircuito en la barra de herramientas en el menú principal. Ver figura 4.1, o seleccionando la opción "Cortocircuito" del menú "Cálculo" ver figura 4.2.

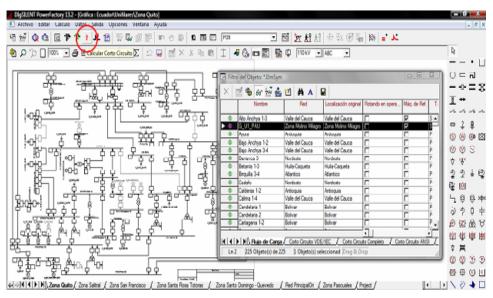


Figura 4.1 Botón para editar la ventana de cortocircuito $^{[7]}$

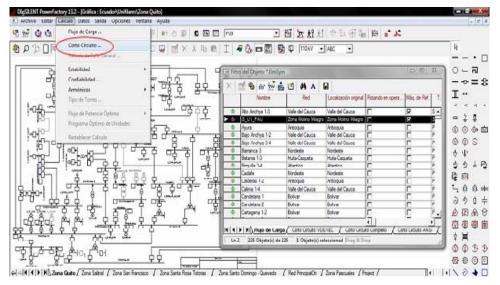


Figura 4.2 Opción para editar la ventana de cortocircuito [7]

Si por ejemplo se requiere realizar el análisis de un cortocircuito para una barra o línea, primero se selecciona en el diagrama unifilar el dispositivo y haciendo click derecho sobre ella, luego se selecciona la opción "Cortocircuito" del menú "Calcular" ver figura 4.3.

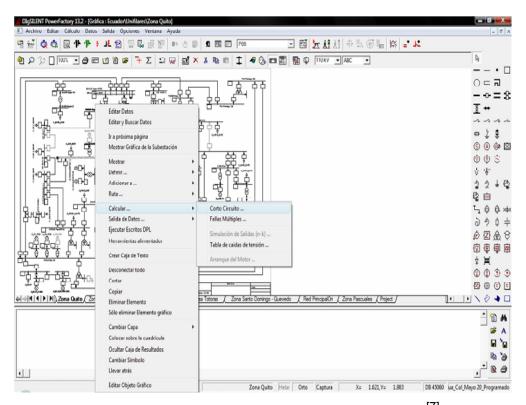


Figura 4.3 Opción para editar la ventana de cortocircuito [7]

En la ventana de cortocircuito se puede observar las opciones básicas y las opciones avanzadas para el cálculo ver figura 4.4.

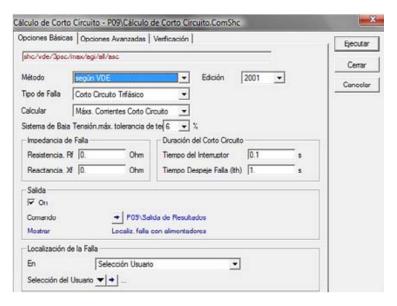


Figura 4.4 Ventana para el cálculo de cortocircuito opciones básicas [7]

4.1.1 Opciones Básicas

- Método: El DIgSILENT ofrece cuatro métodos para el cálculo: Según VDE, Según IEC, Según ANSI, Completo (Para cálculo de fallas múltiples).
- **Tipo de Falla:** Los siguientes tipos de falla están disponibles: Trifásica, Bifásica, Monofásica a tierra, Bifásica a tierra.
- Calcular: Aquí se puede escoger entre: Corriente máxima de cortocircuito, Corriente mínima de cortocircuito. Esta opción no está habilitada en el caso de método completo de cortocircuito.
- **Duración del Corto Circuito**: Se pueden ajustar los tiempos de despeje de la falla (retardo de la protección) y el de interrupción de la falla (retardo de switcheo).
- Salida: Esta opción nos permite guardar los resultados del último cálculo de cortocircuito que hayamos hecho y poderlos obtener como un reporte en la ventana de salida, tal y como se hace en el programa de flujo de carga.

 Localización de la Falla: Con esta opción se selecciona el lugar de la falla o definir que se hagan fallas en todas las terminales del sistema en consideración.

4.1.2 Opciones Avanzadas

Las opciones avanzadas de cortocircuito son usadas para ajustar más los cálculos ver figura 4.5.

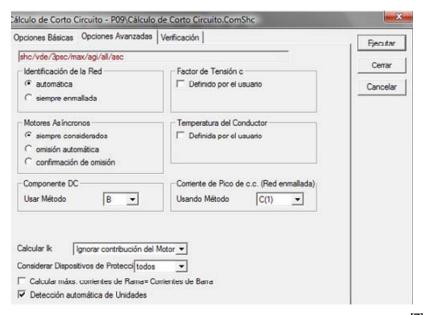


Figura 4.5 Ventana para el cálculo de cortocircuito opción avanzada $^{[7]}$

4.1.2.1 Identificación de la Red

La norma IEC define varios cortocircuitos según la conexión de la fuente:

- Cortocircuito alimentado por una sola fuente.
- Cortocircuito alimentado de fuentes no malladas.

Cortocircuito en redes malladas.

Si ajustamos "Identificación de la Red" en "Automático", el DIgSILENT detecta automáticamente la conexión de las fuentes en el corto circuito.

4.1.2.2 Temperatura del Conductor

La temperatura del conductor (antes de la falla) puede ser ajustada manualmente. Esto influirá en la temperatura máxima calculada de los conductores, como la causada por las corrientes de cortocircuito.

4.1.2.3 Motores Asincrónicos

La influencia en las corrientes de cortocircuito de los motores asincrónicos puede ser considerada siempre, ignorada automáticamente o el usuario puede elegir la opción de confirmar al usuario si no se tiene en cuenta dichos motores.

4.2 MÓDULO DE PROTECCIONES

Los modelos de protección del DIgSILENT han sido implementados con la siguiente filosofía:

- El modelo podrá ser lo más real que sea posible.
- El usuario puede crear protecciones complejas o alterar las existentes.
- Todos los modelos de protección actuarán sobre los interruptores.
- Un fusible es modelado como un relé de sobrecorriente actuando sobre un interruptor.

Los dispositivos de protección son almacenados en el objeto sobre el cual van a actuar. En el diagrama de bloques de la estructura del relé, que se muestra en la figura 4.6, se distinguen los siguientes:

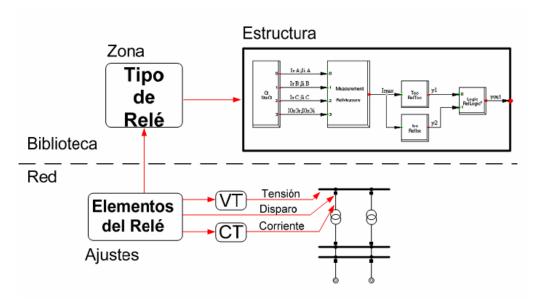


Figura 4.6 Modelado de Protecciones con PowerFactory. [7]

- Un transformador de corriente (StaCt), donde las salidas son las partes reales e imaginarias de las corrientes de fase (IrA, IrB, IrC, etc.) y las partes real e imaginarias de la corriente de la secuencia cero (I0x3r,I0x3i).
- Una unidad de medida (RealMeasure), donde su salida es Imax, que está definida como la máxima corriente de las tres fases.
- Un bloque de una unidad de tiempo-sobrecorriente (RelToc), y una unidad para un relé instantáneo de sobrecorriente (Relloc), que tiene como objetivo transformar los datos anteriores en señales de disparo.

 Una unidad lógica (RelLogic), que combina las señales de disparo en un camino lógico para producir una sola señal de disparo.

Para crear o modificar un dispositivo de protección en un cubículo puede realizarse de varias maneras:

• Dando click derecho sobre el símbolo del disyuntor en el diagrama unifilar, esto desplegará el siguiente menú que se muestra en la figura 4.7.

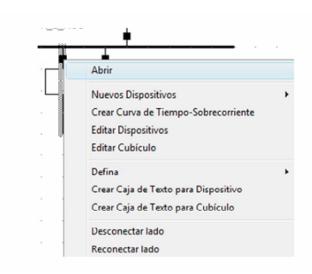


Figura 4.7 Ventana para Modificar o Crear Dispositivos de Protección [7]

Este menú consta de las siguientes Opciones:

 Nuevos Dispositivos: aquí podemos encontrar los diferentes elementos que conforman un sistema de protección como son (ver figura 4.8: Modelo de Relé, Fusibles, Transformadores de Corriente y Potencial, Medida de Corriente, Tensión y PQ, Mediciones externas, Compensación de caída de tensión, Descargador o Pararrayos.

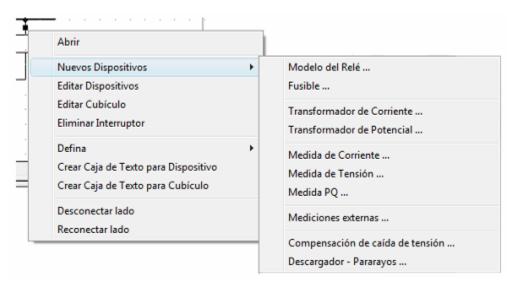


Figura 4.8 Submenú de Nuevos Dispositivos [7]

- Editar Dispositivos: permite editar los elementos que se han creado.
- Editar Cubículos: permite editar los datos de un cubículo (cubículo es el punto de conexión entre un elemento y una barra o terminal).
- Eliminar Interruptor: elimina el interruptor que se encuentra al final de la línea.
- Defina: permite definir un alimentador.
- Crear Caja de Texto para Dispositivo: permite crear una caja de texto que señala al dispositivo que se selecciona.
- Crear Caja de Texto para Cubículo: permite crear una caja de texto que señala al cubículo que se selecciona.
- Desconectar lado: desconecta el extremo de una línea.
- Reconectar lado: reconecta el extremo de la línea desconectada.

4.2.1 Configuración básica de un transformador de corriente

Para ingresar un nuevo elemento, se realiza como se indico anteriormente, al seleccionar la opción del TC, aparece la siguiente ventana ver figura 4.9.

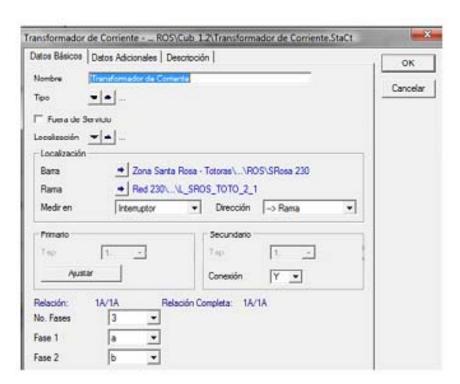


Figura 4.9 Transformador de Corriente [7]

Cuando se crea un TC se debe seleccionar el tipo, este puede ser uno ya existente de la biblioteca del programa o creando uno nuevo para un proyecto especifico. Ya seleccionado el tipo de TC se debe especificar el ajuste de los taps tanto en el primario como en el secundario. En el caso que los TC sean trifásicos o bifásicos es necesario especificar el tipo de conexión que tienen los bobinados secundarios (Delta o estrella), y si es un TC

monofásico se debe especificar la fase de conexión o incluso el neutro del sistema.

En la ventana de "Opciones Avanzadas" ver figura 4.10 se tiene, los datos correspondientes para definir el burden del transformador, la clase de precisión y el factor limite de precisión.

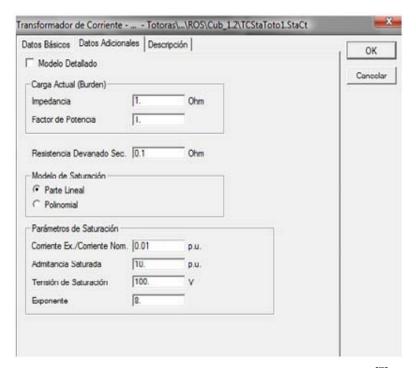


Figura 4.10 Transformador de Corriente opción avanzada [7]

4.2.2 Configuración básica de un transformador de voltaje

De similar forma se accede a la ventana de las opciones de configuración de un TP, las opciones se muestran en la figura 4.11.

Para crear un TP se debe seleccionar el tipo, ya sea de la biblioteca del proyecto, de la biblioteca general o crear uno nuevo para ese caso específico. Ya seleccionado el tipo de TP se debe especificar el ajuste de los taps tanto en el primario como en el secundario, con la característica que para el secundario del transformador de potencial se puede seleccionar un tipo de la biblioteca o crear uno nuevo. En el secundario del transformador seleccionamos el tipo de conexión, por ejemplo el que se muestra en la figura 4.11.

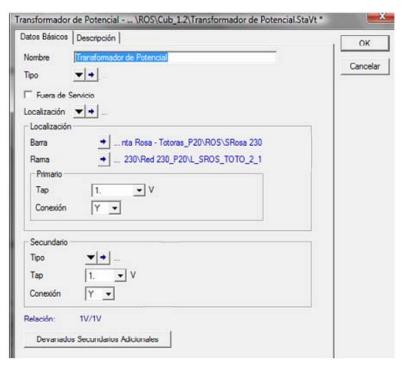


Figura 4.11 Transformador de Voltaje [7]

En la figura 4.12 se muestra la ventana en la que se ingresa los datos del burden del transformador especificando la impedancia en ohm en los terminales del lado secundario del transformador, y el factor de potencia y el rango de los taps del bobinado secundario.

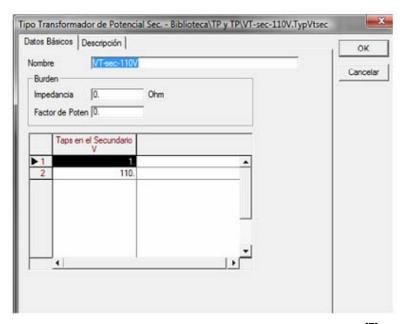


Figura 4.12 Secundario de un Transformador de Voltaje [7]

4.2.3 Crear una protección de distancia para líneas de transmisión

Para crear un dispositivo de protección de distancia, se da click derecho en el símbolo del disyuntor en el diagrama unifilar en el cual va actuar el dispositivo de protección, al seleccionar la opción correspondiente el cuadro de dialogo que se despliega es el de la figura 4.13.

La ubicación del relé va a ser por defecto en el terminal o barra donde está ubicado el disyuntor seleccionado. Para seleccionar un tipo de relé se puede acceder a los que están existentes en la biblioteca general del programa, los tipos de relés que se especifican presentan las características de diseño de cada fabricante e incluso se puede encontrar relés con características de diseño genéricas.

Especificando que tipo de relé, se va a ocupar se debe definir los dispositivos de medición (TC y TP), los cuales proporcionan la información de voltajes y corriente requerida por el relé.

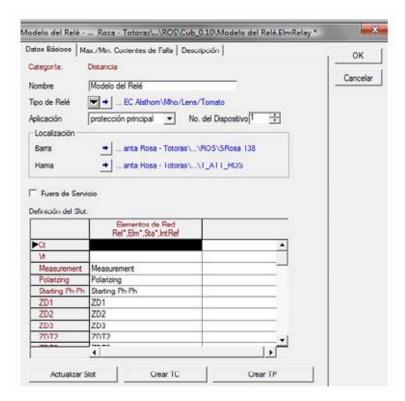


Figura 4.13 Creación de una protección de distancia [7]

Los datos a ser ingresados para la calibración son los siguientes:

- Ct y Vt: corresponden a los dispositivos de medición respectivamente TC y TP.
- Medición: en esta ventana se detalla la corriente nominal y voltaje nominal de operación del relé. Se define el tipo de variables eléctricas medidas, estas son trifásicas, monofásicas, valores RMS (Root Mean Square; raíz media cuadrática) de voltajes y corrientes.

- Temporización: permite el ingreso de los tiempos de disparo del relé para cada zona y se utiliza para la coordinación de protecciones.
- Logic: permite seleccionar el interruptor de potencia sobre el cual va actuar la protección de distancia y además habilita la orden de apertura del interruptor ante una operación del relé.
- Polarización: Los métodos de polarización que permite definir el programa DIgSILENT son:
 - Método de Cuadratura: El voltaje de línea-línea es usado como voltaje de polarización, la unidad direccional compara el ángulo entre: la con Vbc, lb con Vca, lc con Vab. La utilización de este método de polarización hace que el voltaje de línea, que es tomado como referencia, se desplace 90° en sentido antihorario.
 - Método Cruzado: El voltaje de línea-línea es usado como voltaje de polarización, en este caso, la unidad direccional compara el ángulo entre: la con Vac, lb con Vba, lc con Vcb. El voltaje de línea que es tomado como referencia se desplaza 30° en sentido antihorario.
 - Método Propio: Con este método la unidad direccional compara el ángulo entre la corriente de línea y el voltaje fase-neutro que es tomado como referencia. Así: la con Va, lb con Vb, lc con Vc.
 - Método de Secuencia Positiva: La unidad direccional compara el ángulo entre la con V1, lb con aV1, lc con aV1, donde a es igual a 1

 120°

Si la unidad de protección está polarizada como una unidad de Fase-Tierra, es necesario ingresar el coeficiente Ko (Coeficiente de impedancia a tierra), en magnitud y ángulo, coeficiente que sirve para el cálculo de la impedancia aparente vista por el relé en falla monofásica. El programa DIgSILENT para cada una de las zonas permite ingresar el valor del ángulo del relé y el valor del ángulo característico, los cuales pueden ser los mismos para todas las zonas de operación ver figura 4.14

El ángulo del relé para el caso de un tipo mho es la inclinación correspondiente al diámetro de la característica circular del relé con respecto al eje horizontal del diagrama R/X, en cambio para un relé tipo poligonal, el ángulo del relé en el programa es la desviación de uno o más lados del polígono de operación respecto al eje R.

El ángulo característico en el programa nos permite modificar la forma de la curva de operación del relé, en ciertos relés tipo mho al modificar este valor permite obtener formas de operación tipo tomate o lenticular. En el caso de los relés poligonales dependiendo del tipo, se puede modificar varios ángulos para cambiar la característica de la zona de operación.

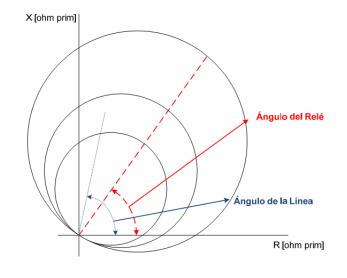


Figura 4.14 Ángulo de relé y ángulo característico [7]

4.3 DIAGRAMA DE DISTANCIA-TIEMPO

El diagrama de distancia-tiempo muestra los disparos del relé dependiendo la localización del cortocircuito. Normalmente es calculado por el comando de barrido de cortocircuito. [7]

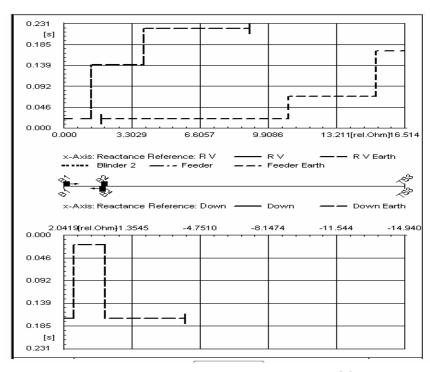


Figura 4.15 Diagrama de distancia-tiempo [7]

4.3.1 Creando un diagrama de distancia-tiempo:

Para crear un diagrama de distancia-tiempo primeramente se debe crear una ruta, esto se hace sombreando las barras y las ramas para el caso en estudio, luego haciendo click derecho en el caso se desplegara una ventana y se elegirá la opción ruta y luego la opción nuevo, como se muestra en la figura 4.16.

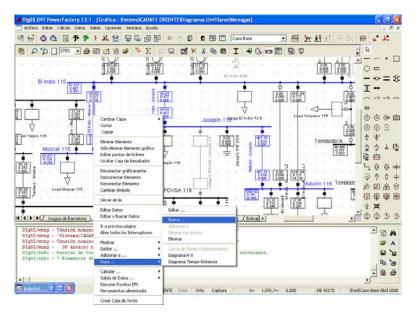


Figura 4.16 Creando un diagrama de distancia-tiempo

Esto hace que abra una ventana para definir la ruta, colocándole un nombre para identificarla, en esta venta se puede elegir el color del caso seleccionado, además de elegir quien estará como primera barra y primera rama, ultima barra y ultima rama; poder intercambiarlos o hasta eliminarlos. Esto se muestra en la figura 4.17.

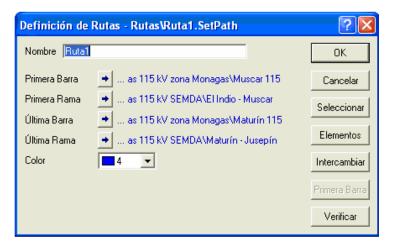


Figura 4.17 Definición de ruta

Haciendo nuevamente click derecho sobre el caso en estudio se despliega la ventana y eligiendo la opción ruta se abrirá otra ventana, en esta ventana se seleccionara diagrama distancia-tiempo para visualizar el diagrama con sus respectivos ajustes de los relés que se encuentran involucrados en el caso de estudio ver figura 4.18 y figura 4.19.

Figura 4.18 Despliegue de ventana

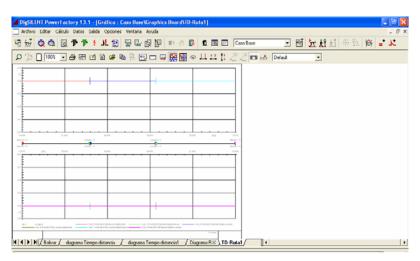


Figura 4.19 Diagrama distancia-tiempo

El diagrama de distancia de tiempo en la figura 4.19 es separado en dos diagramas diferentes. El diagrama hacia adelante muestra todos los relés al principio de la línea en la dirección de la ruta. El diagrama inverso muestra los relés al principio de la línea en la dirección inversa de la ruta. El diagrama superior está en la dirección hacia adelante, el inferior en la dirección hacia atrás. Hay tres estilos diferentes para el diagrama de distancia-tiempo. Estos son:

- Forward/reverse: ambos son vistos.
- Forward: solo el diagrama hacia adelante.
- Reverse: solo el diagrama hacia atrás.

Otra forma de crear un diagrama de distancia-tiempo es abriendo un nuevo panel de instrumentación virtual, esto se hace teniendo en cuenta que debe tener un caso de estudio ya seleccionado como se explico anteriormente, ver figura 4.20 y figura 4.21

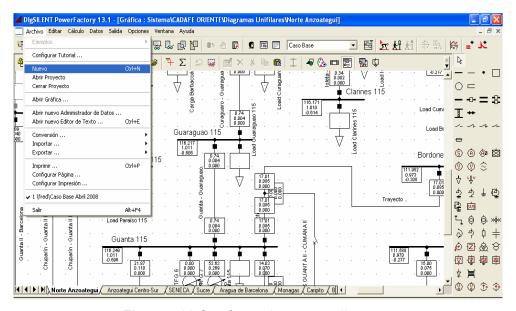


Figura 4.20 Otra forma de crear un diagrama

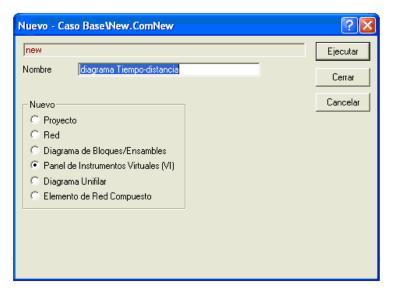


Figura 4.21 Nuevo panel de instrumentación virtual

Al ejecutar el panel de instrumentación virtual se creara un nuevo diagrama en blanco, haciendo click derecho sobre el diagrama se desplegara una ventana el cual se seleccionara la de crear un instrumento virtual, este desplegara otra ventana y se elegirá entre una variedad de diagramas el diagrama de distancia-tiempo como se muestra en la figura 4.22.

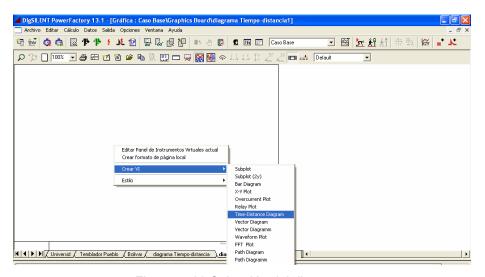


Figura 4.22 Selección del diagrama

Luego de tener el diagrama de distancia tiempo se hace doble click en el diagrama y aparecerá una ventana que es un editor de dialogo del diagrama donde se colocaran los relés y los diferentes ajustes que se quieran ver en el diagrama.

4.3.2 Métodos para el cálculo del tiempo de disparo

Hay varios métodos para calcular el tiempo de disparo mostrado en el diagrama. Para cambiar el método, seleccione la opción de Método en el menú o presione dos veces el ratón en el diagrama para tener acceso al diálogo del diagrama de distancia-tiempo y corregir la opción de Métodos en la página de los Relés. Los métodos se diferencian en la exactitud y la velocidad. El ajuste de unidades posibles para el eje de las abscisas depende del método usado. Los métodos son:

4.3.2.1 Método de Barrido de Cortocircuito

El método de barrido de cortocircuito es el método más exacto para calcular las ubicaciones de cortocircuito. Un barrido de cortocircuito es calculado sobre las ramas entre el primero y la última barra en la ruta. En cada ubicación de cortocircuito el relé establece el tiempo de disparo. La desventaja de este método es la baja velocidad. Siempre que el botón reconstruir de la ventana de gráficos sea presionado el barrido es calculado de nuevo. Las unidades posibles para la ubicación de cortocircuito son la posición en kilómetro o reactancia en ohmio primario del relé.

4.3.2.2 Kilometrical

Este método es el más rápido pero más inexacto. El tiempo de disparo y la ubicación son determinados con la intersección de las impedancias y las características de los relés. Las impedancias usadas para el cálculo son las impedancias del dispositivo. Si hay más de una intersección en la misma impedancia el tiempo de disparo más pequeño es usado. Las unidades posibles para la ubicación de cortocircuito son la posición en kilómetro o reactancia, resistencia e impedancia, cada uno en ohmio primario del relé. [7]

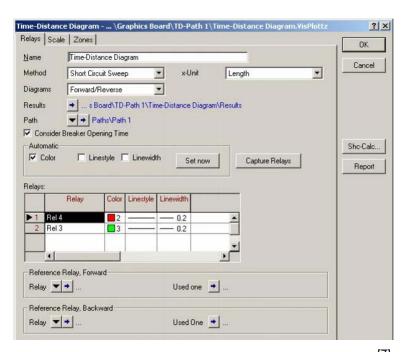


Figura 4.23 Editor de dialogo del diagrama distancia-tiempo $^{[7]}$

4.3.4 Ajustes de Cálculo de Cortocircuito

Si el método para el cálculo del diagrama de distancia-tiempo es ajustado al "Barrido de Cortocircuito", el comando de barrido de cortocircuito

ComShcsweep es usado. Algunos ajustes en el comando son predefinidos por el diagrama de distancia-tiempo. El comando de cortocircuito para el cálculo es ajustado en el comando de barrido. Cambiando el método de cortocircuito, ejemplo "IEC" o " Completo", abre el comando de barrido y edita el diálogo de cortocircuito.

4.3.5 Unidad de X

Un ajuste de la unidad de X es posible dependiendo el método usado. Mirando la descripción de los métodos por detalles. El método de barrido de cortocircuito necesita un relé para medir la impedancia, llamado el relé de referencia. Si no hay ningún relé de referencia, selecciona el primer relé en la dirección del diagrama y es usado como el relé de referencia.

Las opciones disponibles para la unidad de X son:

- Longitud: El eje de abscisas es mostrado dependiendo la longitud línea/cable desde el relé de referencia en "kilómetro".
- Impedancia (pri. Ohm): el eje de abscisas es mostrado dependiendo la impedancia del relé de referencia.
- Reactancia (pri. Ohm): el eje de abscisas es mostrado dependiendo la reactancia del relé de referencia.
- Impedancia (seg. Ohm): Aquí la impedancia del relé de referencia es medida sobre el lado secundario.
- Reactancia (seg. Ohm): Aquí la reactancia del relé de referencia es medida sobre el lado secundario.

4.3.6 Relé de Referencia

Las posiciones de eje de abscisas o impedancias son calculadas en relación con el principio de la ruta. Si se ajusta un relé de referencia las posiciones de impedancias son en relación con el relé de referencia. El método de barrido necesita siempre un relé de referencia. Si ningún relé de referencia se ajusta, el primer relé en el diagrama de dirección es tomado como el relé de referencia. El bus de barra conectado al relé de referencia es marcado con una flecha que señala en la dirección del diagrama.

El relé de referencia es ajustado utilizando el gráfico o por la edición del dialogo "Diagrama de Distancia-Tiempo". El cambio del relé de referencia gráficamente es hecho pulsando el botón derecho del ratón sobre el símbolo de relé y seleccionando el " relé de referencia de ajuste " en el menú. Si hay más de un relé conectado a la barra seleccionada **PowerFactory** apunta para el relé a usar. En el diálogo del " Relé de Distancia-Tiempo " el " Relé de Referencia " el marco es localizado sobre el inferior. Cambie la referencia del "Relé" para poner o ajustar a cero (reinicializar) el relé de referencia.

Las posiciones siguientes pueden ser presionadas dos veces en el ratón para una acción de falla:

- Accisa: edita la escala.
- Curva: edita los pasos del relé.
- Caja del relé: edita al relé.
- Accisa de la ruta: edita la Línea.
- Editor: abre el editor de dialogo "distancia-tiempo".

Si en cualquier posición del diagrama es pulsado con el botón derecho del ratón, el menú aparecerá. Hay algunas funciones adicionales disponibles además de los métodos básicos para el diagrama de distancia- tiempo las cuales son:

- Rejilla: Muestra el diálogo para modificar las líneas de rejilla.
- Editor de ruta: Abre el diálogo de path definition mostrado en (SetPath).
- Método: ajusta el método usado para calcular el tiempo de disparo.
- Unidad de X: Ajusta la unidad para el eje de abscisas, impedancias en kilómetro.
- Diagramas: Escoges el diagramas mostrados hacia adelante, hacia atrás o ambos.
- Reporte: Estas opción imprime un informe para la posición de los relés, su tiempo de disparo así como calcula todas las impedancias en la ventana de salida.

4.4 DIAGRAMA R-X

El relé o el diagrama R-X **VisDraw** muestra las diferentes características de impedancia del relé de protección de distancia en uno o varios diagramas de R-X. Además fácilmente pueden mostrar la conexión de la impedancia de líneas y transformadores en la red cerca del equipo de protección. Así las impedancias de las diferentes zonas del relé y el tiempo de disparo fácilmente pueden ser ajustadas y comprobadas para una buena y cuidadosa protección del equipo. [7]

4.4.1 Creando un diagrama del relé (VisDraw):

El modo más fácil de crear y mostrar un **VisDraw** es seleccionar un cubículo, donde un relé de distancia es instalado. Haciendo Click con el botón derecho en el interruptor para abrir el menú. Este mostrará que las opciones Crean y añaden el diagrama de R-X. **PowerFactory** entonces creará un nuevo diagrama mostrando el diagrama de R-X para todos los relés en el cubículo seleccionado.

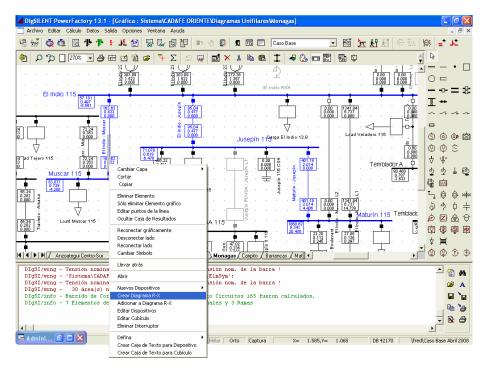


Figura 4.24 Creando un diagrama R-X

Otro camino es pulsado el botón derecho del ratón en un elemento que pertenece a un diagrama definido como caso de estudio, esto desplegará una ventana y eligiendo la opción **ruta** y luego la opción **diagrama R-X** como se muestra en la figura 4.25.

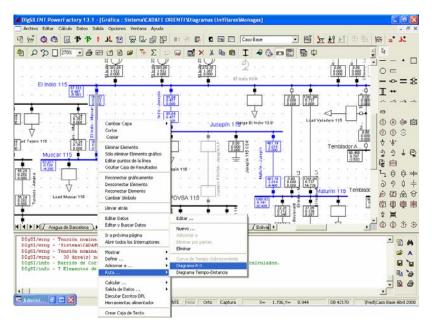


Figura 4.25 Otra forma de crear un diagrama R-X

El paso anterior hace que cree una pantalla colocándose como una pestaña en la parte inferior del programa que al pulsarla visualiza el diagrama R-X, con todos los relés asociados al caso de estudio como se muestra en la figura 4.26.

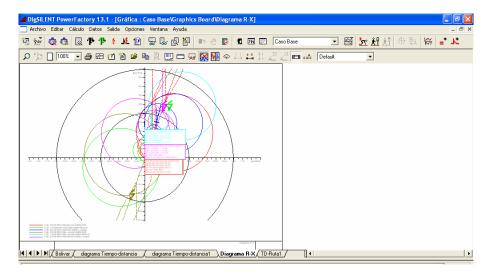


Figura 4.26 Diagrama R-X

El diagrama R-X visualiza:

- Las características de impedancia del relé de distancia seleccionado incluyendo las diferentes zonas.
- La curva de impedancia de las líneas y transformadores cerca de la ubicación del relé.
- La ubicación de otros relés de distancia cerca.
- La impedancia de cortocircuito dependiendo de la posición y las impedancias de falla.
- El tiempo de disparo del relé.

En la figura 4.27 muestra un ejemplo para el diagrama de R-X, donde dos características de relé y las impedancias de línea de transmisión son mostradas.

Además muestra la ubicación del cortocircuito o el cálculo de flujo de carga como un punto de impedancia equivalente en el diagrama. Para cada relé mostrado en el gráfico también muestran una leyenda conteniendo la información relevante en cuanto al cálculo de cortocircuito de cada relé:

- El nombre del relé.
- La magnitud de la Impedancias vistas de la ubicación de relé.
- El tipo de falla.
- El tiempo de disparo real del relé.
- Cual zona es disparada.

La información mostrada puede ser cambiada en los ajustes de diagrama del relé.

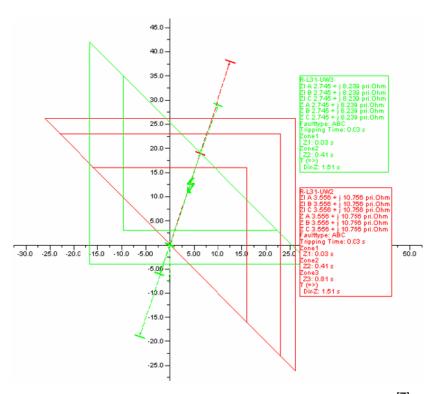


Figura 4.27 Diagrama R-X como resultado de un cortocircuito [7]

4.4.2 Modificación de los Ajustes del Relé

Desde el diagrama R-X, las características de los relés mostrados fácilmente pueden ser cambiadas según las impedancias del equipo eléctrico, que debe ser protegido.

Presionando dos veces el ratón la característica de un relé dividen en zonas el diálogo de ajustes de la zona será abierto y puede ser modificado. Aquí el relé, específica la información de la característica de impedancia que puede ser introducida. También muestran la información de la rama de línea conectada al relé en la dirección "forward" en el diálogo. Si el botón OK es seleccionado la característica del relé será cargada.

Es también posible editar las líneas o elementos de transformador mostrados en el diagrama. Sosteniendo todavía la flecha del ratón sobre el elemento durante un segundo una caja de ayuda aparecerá y mostrará el nombre del elemento. Si una de las líneas es presionada dos veces con el ratón, el diálogo de edición del elemento aparece en la gráfica de la línea. De este modo las impedancias de línea fácilmente pueden ser accesada.

4.4.3 Ajustes del diagrama del relé

Los ajustes de diagrama R-X pueden ser accesado seleccionando las Opciones del menú o presionando el botón de opciones en el diálogo de revisión del diagrama.

4.4.3.1 Opciones Básicas:

El diálogo muestra las opciones siguientes:

- Unidad: la unidad de corriente puede ser puesta al primario o secundario (relé) amperio.
- unidad del relé: Esta opción es usada para mostrar sólo ciertos tipos de características de relé.
- Zonas: Aquí la zona puede ser seleccionada para ser mostrada.
 También Todas las zonas de los relés pueden ser mostradas en un gráfico.
- Pantalla: Esta opción es usada para seleccionar el flujo de carga o la corriente de cortocircuito visualizando la impedancia equivalente.
 Como una flecha de cortocircuito, una cruz o ninguno pueden ser seleccionados.

• Color de la zona fuera de servicio: Zonas de unidades fuera de servicio puede mostrarse también en un color diferente.

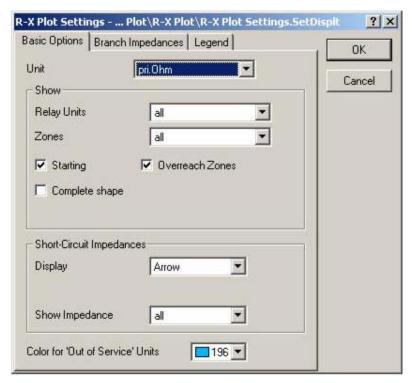


Figura 4.28 Ajustando el diagrama R-X [7]

4.4.3.2 Impedancias de Rama

Hay opciones especiales para modificar el aspecto de las impedancias de rama:

- El número de relé de localización: Sólo las ramas son resaltadas al x-th próximo al relé de localización. Si es cero, no muestran ningunas ramas en absoluto.
- Ramas: máximo de ramas mostradas de cada posición de relé. Si es cero, no muestran ningunas ramas en absoluto.
- Ignore la impedancia del Transformador: las impedancia de los Transformadores son ignorados cuando esta activado.

- Método: Método para determinar las impedancias de línea.
- Opciones de Rama: Aquí el estilo de línea y la anchura pueden ser seleccionadas.
- **Leyenda**: En la leyenda que pertenece a cada relé la información diferente y los resultados de cálculo son mostrados. Aquí el usuario puede escoger, que resultados deben ser mostrados. [7]

CAPITULO 5

DESARROLLO

5.1 NIVELES DE CORTOCIRCUITOS ACTUALES

En la topología en estudio, fue necesaria una depuración del sistema, puesto que se observó que se encontraban líneas y subestaciones no operativas, las cuales se eliminaron, además de longitudes e impedancias de líneas que no concordaban; también se agregó en las subestaciones el cuartel y clarines la generación en la barra de 480V para ver la contribución del cortocircuito de estas unidades de generación distribuida, al sistema. Todo esto con el apoyo de la herramienta computacional Disilent Powerfactory. A continuación se presentan unas tablas con los valores de cortocircuitos en las diferentes subestaciones de CADAFE.

Tabla 5.1 Cortocircuitos en las subestaciones del estado Sucre

		Trifásico		Monofásico				
Nombre	lk"	lk", Ángulo	Sk"	lk"	lk", Ángulo	Sk"		
Nomble	kA	grados	MVA	kA	grados	MVA		
Bordones 115	5.245986	-74.44641	1044.926	3.57851	-73.61258	237.5962		
Cariaco 115	7.518377	-75.98104	1497.554	6.232071	-76.35707	413.7801		
Carúpano 115	4.598941	-72.64375	916.0439	3.405232	-73.38133	226.0913		
Casanay 115	11.30639	-80.81839	2252.072	11.72301	-82.65189	778.3525		
Cumaná II 115	5.726468	-74.73519	1140.631	3.963914	-73.91527	263.1852		
Cumaná III 115	4.831599	-74.79339	962.386	3.247286	-73.71875	215.6045		
Guiria 115	0.9570255	-71.80723	190.6259	0.5995417	-72.55978	39.80674		
Irapa 115	1.228796	-71.86965	244.7587	0.77717	-72.57823	51.60042		
Manzanares 115	4.698113	-74.80207	935.7976	3.143928	-73.69032	208.742		
TOFF - Sta Fe	5.236192	-74.62762	1042.975	3.557507	-73.03582	236.2017		
Tres Picos 115	5.693211	-74.71076	1134.007	3.93689	-73.88989	261.3909		

Tabla 5.2 Cortocircuitos en las subestaciones del norte de Anzoátegui

		Trifásico			Monofásico	
Nombre	lk"	lk", Ángulo	Sk"	lk"	lk", Ángulo	Sk"
Nombre	kA	grados	MVA	kA	grados	MVA
Barbacoa 115	17.34141	-85.20217	3454.163	21.1237	-85.5114	1402.5160
Barcelona 115	12.17098	-81.05155	2424.286	10.9340	-78.6724	725.9647
Chuparín 115	9.421737	-78.91054	1876.677	7.6926	-76.9589	510.7542
Clarines 115	1.707939	-72.91503	340.1972	1.1206	-73.2073	74.4032
Cuartel 115	6.55885	-76.67043	1306.43	4.9409	-75.3172	328.0524
Curaguaro 115	6.607366	-75.80191	1316.094	4.9543	-74.0954	328.9415
Guanta 115	10.06441	-80.16375	2004.688	11.1866	-81.5071	742.7342
Guanta II 115	15.2622	-83.74584	3040.015	17.2353	-83.7743	1144.3400
Guaraguao 115	7.23137	-76.98937	1440.386	6.0194	-75.6238	399.6608
Isleta 115	2.459099	-73.4991	489.8177	1.6708	-73.5199	110.9337
Lecherías 115	5.488861	-75.83953	1093.303	3.9807	-74.7911	264.3029
Paraíso 115	5.545425	-75.88996	1104.57	3.9686	-74.8516	263.4940
Parchita 115	11.27662	-81.13355	2246.143	9.8780	-78.7214	655.8558

Tabla 5.3 Cortocircuitos en las subestaciones del sur de Anzoátegui

		Trifásico			Monofásico	
Nombre	lk"	lk", Ángulo	Sk"	lk"	lk", Ángulo	Sk"
Nomble	kA	grados	MVA	kA	grados	MVA
Anaco 115	8.641992	-80.35258	1721.362	10.69068	-82.36747	709.8106
El Esfuerzo	11.64438	-81.20878	2319.395	10.78264	-78.95236	715.9162
El Roble 115	7.342244	-79.6723	1462.471	8.446355	-81.18429	560.7981
El Tigre 115	16.90516	-86.63554	3367.268	21.00027	-86.88082	1394.319
El Tigre II 115	11.39596	-80.75795	2269.914	10.32924	-78.46328	685.8127
El Tigre III 115	8.66937	-78.55652	1726.816	7.09105	-76.87724	470.8123
Los Pilones 115	6.053887	-78.30294	1205.849	6.088541	-78.82695	404.2504
Rebombeo I 115	4.257234	-77.11669	847.9807	2.851422	-76.07639	189.321
Rebombeo II 115	5.916626	-78.02775	1178.508	4.253055	-76.80468	282.3828

Tabla 5.4 Cortocircuitos en las subestaciones del estado Maturín

		Trifásico		Monofásico				
Nombre	lk"	lk", Ángulo	Sk"	lk"	lk", Ángulo	Sk"		
Nombre	kA	grados	MVA	kA	grados	MVA		
Boulevard 115	5.629565	-77.56865	1121.33	4.12588	-75.66098	273.9389		
El Indio 115	14.14893	-83.13668	2818.267	15.59301	-83.8443	1035.302		
Jusepín 115	11.66144	-82.68854	2322.793	9.326483	-80.12403	619.2344		
La Paz 115	8.867065	-78.41888	1766.194	6.472434	-76.16415	429.7391		
Maturín 115	10.84198	-79.8544	2159.569	9.935962	-78.95983	659.701		
Muscar 115	13.46004	-82.50863	2681.048	11.00821	-79.86818	730.8932		

Quiriquire 115	3.84704	-76.474	766.2758	3.393457	-78.34428	225.3095
Santa Bárbara 115	4.761853	-76.04432	948.4936	4.269089	-78.33693	283.4474
Tejero 115	9.607728	-78.44857	1913.723	7.345646	-76.95643	487.7162
Temblador 115	2.818779	-73.89477	561.4608	2.356561	-78.09013	156.4645
Travieso 115	9.177015	-78.44004	1827.931	7.147087	-77.43954	474.5329
Tucupita 115	1.124079	-72.33989	223.9006	0.9223949	-76.454	61.24267

Tabla 5.5 Cortocircuitos en las subestaciones del estado Bolívar

	Trifásico			Monofásico			
Nombre	lk"	lk", Ángulo	Sk"	lk"	lk", Ángulo	Sk"	
Nombre	kA	grados	MVA	kA	grados	MVA	
C. Bolívar 115	7.877919	-86.53785	1569.17	8.806608	-86.81724	584.7172	
Farallones 115	3.792043	-80.74317	755.3212	2.100287	-74.35759	139.4491	

5.2 ACTUALES CRITERIOS DE AJUSTE

En las Protecciones de Distancia podemos identificar varias etapas de impedancia, las cuales en general son cuatro, a continuación se presentan los ajustes típicos y criterios usados en las Líneas de Transmisión de la Red de CADAFE para Líneas no compensadas, sin embargo estos valores pueden variar según las características y condiciones del Sistema.

5.2.1 Líneas no Compensadas

Para los ajustes de las Etapas tenemos los siguientes criterios:

- 1era. Etapa: 80% a 85% de la longitud de la línea tiempo de operación = instantáneo.
- 2da. Etapa: 100% de la línea + 20% de la siguiente más corta tiempo de operación =300 ó 400 mseg.
- 3era. Etapa: en esta etapa el criterio de ajuste va de acuerdo a la experticia y experiencia de la persona encargada en el área de protecciones, este es uno de los criterio utilizado; 100% de la línea +

137

100% de la siguiente más corta, tiempo de operación =1,2 ó 1,5

seg.

Arranque: 1,3 x 3era. Etapa, tiempo de operación =2.0 ó 3.0 seg.

La 1era. Etapa: Se ajusta entre el 80 y 85% de la línea a proteger esto para evitar disparos no selectivos en caso de ocurrir fallas en la barra o muy cercana a la salida de otras líneas en la S/E opuesta ver figura 5.1. Este porcentaje de ajuste es el recomendado, con el cual, se cubren los errores de los transformadores de Medida, errores en los equipos de protección y errores en los mismos cálculos de la impedancia de la línea.

La 2da. Etapa: Es el respaldo de la diferencial de barra y no apertura de los interruptores de salida para fallas cercanas en el extremo opuesto ver figura 5.1.

La 3era. Etapa: Es el respaldo para una falla cercana a la S/E C. en caso de no apertura del interruptor en la S/E B. ver figura 5.1.

Arranque: Es la que envuelve a las demás etapas de medición. Para caso de fallas monofásicas se debe calcular y ajustar el factor de compensación de la impedancia de secuencia cero. ^[2]

$$Ko = \frac{(Zo - Z1)}{3*Z1}$$
 Ec.5.1

Donde:

Z0: impedancia de secuencia cero

Z1: impedancia de secuencia positiva

K0: factor de compensación.

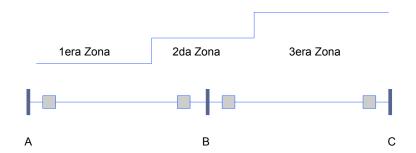


Figura 5.1 Ajustes de etapas en líneas no compensadas ^[2]

5.2.2 Valores de las zonas actuales

Tabla 5.6 Valores actuales de zonas del estado Monagas

RELES	uz	NOMBRE	MAG	Z1 S ANG W/SEC	Z2 MAG ANG OHM/SEC		Z3 MAG ANG OHM/SEC	
R1	10.45	Boulevard/Quiriquire	No se tienen información de los ajusto					
R2	10.45	Quiriquire/Boulevard	No	se tienen	informa	ción de	los aju	stes
R3	17.42	El Indio/Jusepín	1.60	70.22	2.46	70.22	4.00	70.22
R4	17.42	Jusepín/El Indio	0.40	70.22	0.62	70.22	1.00	70.22
R5	2.09	El Indio/La Paz L1	0.30	70.60	0.44	70.60	0.69	70.60
R6	2.09	La Paz/El Indio L1	No	se tienen	informa	ción de	los aju	stes
R7	10.45	El Indio/La Paz L2	0.25	70.60	0.36	70.60	0.6	70.60
R8	17.42	La Paz/El Indio L2	No	se tienen	informa	ción de	los aju	stes
R9	10.45	El Indio/Maturín L1	0.48 71.59 0.56 71.59 2.50					71.59
R10	8.71	Maturín/El Indio L1	0.48 71.59 1.68 71.5				6.40	71.59
R11	17.42	El Indio/Maturín L2	0.25	70.22	0.35	70.22	0.58	70.22
R12	8.71	Maturín/El Indio L2	0.24	70.22	0.28	70.22	1.20	70.22
R13	10.45	El Indio/Muscar	1.53	69.10	2.16	69.10	3.61	69.10
R14	8.71	Muscar/El Indio	2.71	69.10	3.82	69.10	7.96	69.10
R15	17.42	Maturín/Boulevard	0.60	75.10	0.73	75.10	1.20	75.10
R16	8.71	Boulevard/Maturín	No	se tienen	informa	ción de	los aju	stes
R17	17.42	Maturín/Jusepín	0.48	70.22	0.68	70.22	1.04	75.22
R18	17.42	Jusepín/Maturín	0.44	70.22	0.68	70.22	1.12	75.22
R19	17.42	Maturín/Quiriquire	0.60	75.10	0.73	75.10	1.20	75.10
R20	10.45	Quiriquire/Maturín	No se tienen información de los ajustes					
R21	8.71	Santa Bárbara/Travieso	0.92 75.17 1.30 75.17 5.18 75.					
R22	8.71	Travieso/Santa Bárbara	No	se tienen	informa	ción de	los aju	stes

R23	10.45	Tejero/Muscar	0.28	69.78	0.40	69.78	2.29	69.78		
R24	10.45	Muscar/Tejero	No	No se tienen información de los ajustes						
R25	17.42	Temblador /Tucupita	1.48	1.48 63.74 1.75 63.74 2.23 6						
R26	17.42	Tucupita/Temblador	Esquema de protección con sobrecorrier					riente		
R27	8.71	Travieso/Rebombeo I	No se tienen información de los ajustes							
R28	8.71	Rebombeo I/Travieso	1.66	76.21	2.33	76.21	3.94	76.21		
R29	8.71	Travieso/Tejero	No	se tiener	informa	ción de	los aju	stes		
R30	8.71	Tejero/Travieso	0.3	69.10	0.4363	69.10	3.692	69.10		
R31-R32	17.42	El Indio/Temblador L1 y L2	2.34	70.60	3.31	70.60	6.00	70.60		
R33-R34	17.42	Temblador/El Indio L1 y L2	1.17	70.60	1.66	70.60	3.20	70.60		

Tabla 5.7 Valores actuales de zonas del sur del estado Anzoátegui

RELES	uz	NOMBRE	MAG	Z1 S ANG W/SEC	MAG	Z2 S ANG M/SEC	MAG	3 ANG //SEC
R35	1.39	Anaco/El Roble	4.29	76.21	7.69	76.21	12.50	76.21
R36	1.39	El Roble/Anaco	Esque	ema de p				
R37	8.71	Anaco/El Tigre	1.55	71.59	2.18	71.59	2.40	71.59
R38	8.71	El Tigre/Anaco	3.92	71.59	5.65	71.59	6.00	71.59
R39	10.45	Anaco/El Tigre III	1.63	71.59	2.29	71.59	2.40	71.59
R40	10.45	El Tigre III/Anaco	No:	se tienen	inform	ación de	los aju	stes
R41	8.71	Anaco/Rebombeo II	1.00	76.21	1.41	76.21	2.59	76.21
R42	8.71	Rebombeo II /Anaco	2.39	76.21	3.27	76.21	6.91	76.21
R43	8.71	El Tigre II/El Esfuerzo	No:	se tienen	inform	ación de	los aju	stes
R44	8.71	El Esfuerzo/El Tigre II		No tie	nen rel	é de dist	ancia	
R45	8.71	El Esfuerzo/El Tigre		No tie	nen rel	é de dist	ancia	
R46	8.71	El Tigre/El Esfuerzo	0.71	70.22	1.00	70.22	4.00	70.22
R47	8.71	El Tigre/El Tigre II	0.37	70.22	0.53	70.22	3.43	70.22
R48	8.71	El Tigre II/El Tigre	No:	se tienen	inform	ación de	los aju	stes
R49	8.71	El Tigre/El Tigre III	0.36	71.59	0.55	71.59	4.00	71.59
R50	8.71	El Tigre III /El Tigre	No:	se tienen	inform	ación de	los aju	stes
R51	10.45	El Tigre II/Santa Bárbara	No:	se tienen	inform	ación de	los aju	stes
R52	10.45	Santa Bárbara/El Tigre II	5.25	71.59	7.87	71.59	10.50	71.59
R53	10.45	Rebombeo I/Rebombeo II	2.93	76.21	4.10	76.21	6.14	76.21
R54	10.45	Rebombeo II/Rebombeo I	2.73 76.21 4.10 76.21 5.59 76					76.21
R55	11.24	El Roble/Los Pilones	No tienen relé de distancia					
R56	11.24	Los Pilones/El Roble		No tie	nen rel	é de dist	ancia	

Tabla 5.8 Valores actuales de zonas del norte del estado Anzoátegui

RELES	uz	NOMBRE	_	1 ANG /SEC	Z2 MAG ANG OHM/SEC		Z3 MAG ANG OHM/SEC	
R57	10.45	Barbacoa/Guaraguao	1.60	70.22	1.92	70.22	2.74	70.22
R58	10.45	Guaraguao/Barbacoa	No se tienen información de los ajustes					

R59	10.45	Barbacoa/Isleta	3.84	71.59	4.46	71.59	6.00	71.59
R60	10.45	Isleta/Barbacoa			informa			
R61	8.71	Barbacoa/Barcelona	0.69	75.10	0.98	75.10	1.63	75.10
R62	8.71	Barcelona/Barbacoa	0.70	75.10	0.96	75.10	1.92	75.10
R63	8.71	Barcelona/Cuartel	0.40	71.59	0.66	71.59	0.80	71.59
R64	8.71	Cuartel/Barcelona			informa			
R65	8.71	Barcelona/Parchita	0.70	75.39	0.96	75.39	1.92	75.39
R66	8.71	Parchita/Barcelona	No s		informa			
R67	10.45	Barbacoa/Chuparín	0.80	71.90	1.17	71.90	2.74	71.90
R68	10.45	Chuparín/Barbacoa	0.40	71.90	0.58	71.90	1.14	71.90
R69	10.45	Chuparín/Guanta II L1	0.44	73.24	0.61	73.24	1.12	73.24
R70	2.09	Guanta II/Chuparín L1	2.59	73.24	3.66	73.24	6.11	73.24
R71	10.45	Chuparín/Guanta II L2	0.44	72.78	0.64	72.78	3.20	72.78
R72	2.09	Guanta II/Chuparín L2	1.59	72.78	2.24	72.78	3.74	72.78
R73	17.42	Chuparín/Paraíso	0.48	71.59	0.80	71.59	1.12	71.59
R74	17.42	Paraíso/Chuparín	Esque	ma de p	rotecció	n con s	obrecoi	riente
R75	8.71	Cuartel/Lecherías	No s	e tienen	informa	ción de	los aju	stes
R76	8.71	Lecherías/Cuartel	Esque	ma de p	rotecció	n con s	obrecoi	riente
R77	8.71	Guanta/Bordones	1.22	71.91	1.71	71.91	2.53	71.91
R78	8.71	Bordones/Guanta	No s	e tienen	informa	ción de	los aju	stes
R79	1.74	Guanta II/Cumana II	12.52	70.91	17.67	70.91	29.45	70.91
R80	8.71	Cumana II/Guanta II	2.63	70.91	3.69	70.91	4.57	70.91
R81	8.71	Guanta/Guanta II L1	0.56	72.55	0.79	72.55	3.43	72.55
R82	1.74	Guanta II/Guanta L1	2.13	72.55	3	72.55	5	72.55
R82	8.71	Guanta/Guanta II L2	1.22	72.76	1.71	72.76	2.53	72.76
R83	1.74	Guanta II/Guanta L2	3.32	72.76	4.69	72.76	7.82	72.76
R84	10.45	Guanta/Guaraguao	0.4	70.54	0.5926	70.54	2.824	70.54
R85	10.45	Guaraguao/Guanta			informa			
R86	1.74	Guanta II/Barcelona	2.46	70.93	3.47	70.93	5.78	70.93
R87	8.71	Barcelona/Guanta II	0.48	70.93	0.70	70.93	1.14	70.93
R88	17.42	Isleta/Clarines	No se tienen información de los ajustes					
R89	17.42	Clarines/Isleta	Esquema de protección con sobrecorriente					
R90	8.71	Parchita/Barbacoa			informa			
R91	1.04	Barbacoa/Parchita	1.37	75.80	1.96	75.80	3.25	75.80

Tabla 5.9 Valores actuales de zonas del estado Sucre

RELES	uz	NOMBRE	Z1 MAG ANG OHM/SEC		AG ANG MAG ANG		MAG ANG MAG ANG		Z3 MAG ANG OHM/SEC	
R92	17.42	Cariaco/Cumaná II	1.82	71.91	2.5	71.91	3.48	71.91		
R93	17.42	Cumaná II/Cariaco	1.75	71.91	2.43	71.91	3.55	71.91		
R94	17.42	Carúpano/ Irapa	0.48	71.59	0.69	71.59	1.17	71.59		
R95	17.42	Irapa/Carúpano	No tienen relé de distancia							
R96	8.71	Casanay/Cariaco	0.34 67.33 0.87 67.33 2.4					67.33		

R97	8.71	Cariaco/Casanay	0.18	67.33	0.26	67.33	1.25	67.33
R98	17.42	Casanay/Carúpano L1	0.96	62.09	1.33	62.09	3.42	62.09
R99	17.42	Carúpano/Casanay L1	0.48	62.09	0.67	62.09	1.71	62.09
R100	17.42	Casanay/Carúpano L2	8.0	71.59	1.10	71.59	3.2	71.59
R101	17.42	Carúpano/Casanay L2	0.4	71.59	0.55	71.59	1.55	71.59
R102-R103	10.45	Casanay/Chacopata L1, L2	2.02	75.40	2.86	75.40	3.84	75.40
R104	17.42	Casanay/Cumaná II	1.94	71.59	2.59	71.59	3.62	71.59
R105	17.42	Cumaná II /Casanay	1.94	71.59	2.63	71.59	3.31	71.59
R106	8.71	Cumaná II/Bordones	2.82	70.54	3.92	70.54	4.57	70.54
R107	8.71	Bordones/Cumaná II	No se tienen información de los aju		stes			
R108	8.71	Cumaná II/Manzanares	0.24	75.11	0.32	75.11	1.50	75.11
R109	8.71	Manzanares/Cumaná II	No se tienen información de los ajustes			stes		
R110-R111	13.06	Cumaná II/Tres Picos L1, L2	Esquema de protección con hilo piloto			loto		
R112	13.61	Tres Picos/Cumaná II L1	Esquema de protección con hilo piloto			loto		
R113	12.56	Tres Picos/Cumaná II L2	Esqu	uema de	protec	ción con	hilo pi	loto
R114	17.42	Cumaná III/ Manzanares	No se	e tienen	informa	ción de	los aju	stes
R115	8.71	Manzanares/Cumaná III	No se	e tienen	informa	ción de	los aju	stes
R116	8.71	Cumaná II/Cumaná III	0.37	75.11	0.76	75.11	4.00	70.54
R117	8.71	Cumaná III/Cumaná II	No se	e tienen	informa	ción de	los aju	stes
R118	26.136	Irapa/Guiria		No tie	nen relé	de dista	ancia	
R119	26.136	Guiria/Irapa	No tienen relé de distancia					

Tabla 5.10 Valores actuales de zonas del estado Bolívar

RELES	uz	NOMBRE	MAG	Z1 G ANG M/SEC		Z2 .G ANG IM/SEC	MAG	Z3 3 ANG M/SEC
R120-R121	2.09	Bolívar/Farallones L1 y L2	0.57	76.28	0.6	76.28	0.89	76.28
R122-R123	1.39	Farallones/Bolívar L1 y L2	No se tienen información de los ajustes		justes			

5.3 CRITERIOS DE AJUSTES Y ESQUEMAS DE PROTECCIÓN

Los Relés de Distancia se usan ampliamente como protección primaria o de respaldo en Sistemas de Subtransmisión y Transmisión dónde se desean disparos de alta velocidad. Para la implementación de la Protección de Distancia se hace necesario conocer la clasificación de las líneas; es decir, establecer cuáles son Cortas, Medias y Largas debido a que los requerimientos de protección varían para cada una de ellas. En las tablas siguientes se presentan la clasificación de las líneas en 115kV a nivel oriental de la empresa CADAFE.

Tabla 5.11 Clasificación de las líneas del estado Monagas

Nombre	ZL(pu)	ZS(pu)	SIR	Tipo
Boulevard/Quiriquire	0.07632	0.26753961	3.50560914	MEDIA
Quiriquire/Boulevard	0.07632	0.39150384	5.12992993	CORTA
El Indio/Jusepín	0.12709	0.10644843	0.83761557	MEDIA
Jusepín/El Indio	0.12709	0.12915477	1.016286	MEDIA
El Indio/La Paz L1	0.02360	0.10644843	4.5106712	CORTA
La Paz/El Indio L1	0.02360	0.1698568	7.19755268	CORTA
El Indio/Maturín L1	0.03705	0.10644843	2.87302139	MEDIA
Maturín/El Indio L1	0.03705	0.13891662	3.74933116	MEDIA
El Indio/Maturín L2	0.03851	0.10644843	2.76414781	MEDIA
Maturín/El Indio L2	0.03851	0.13891662	3.60724969	MEDIA
El Indio/Muscar	0.14259	0.10644843	0.74655591	MEDIA
Muscar/El Indio	0.14259	0.11189642	0.78476439	MEDIA
Maturín/Boulevard	0.04724	0.13891662	2.94041656	MEDIA
Boulevard/Maturín	0.04724	0.26753961	5.66295023	CORTA
Maturín/Jusepín	0.15404	0.13891662	0.90181242	MEDIA
Jusepín/Maturín	0.15404	0.12915477	0.83844094	MEDIA
Maturín/Quiriquire	0.10175	0.13891662	1.36521681	MEDIA
Quiriquire/Maturín	0.10175	0.39150384	3.84754275	MEDIA
Santa Bárbara/Travieso	0.08263	0.31629094	3.827734	MEDIA
Travieso/Santa Bárbara	0.08263	0.1641199	1.98616913	MEDIA
Tejero/Muscar	0.02907	0.15676243	5.39329652	CORTA
Muscar/Tejero	0.02907	0.11189642	3.84971438	MEDIA
Temblador /Tucupita	0.43538	0.53432034	1.22725064	MEDIA
Tucupita/Temblador	0.43538	1.33988001	3.07749581	MEDIA
Travieso/Rebombeo I	0.12893	0.1641199	1.27293744	MEDIA
Rebombeo I/Travieso	0.12893	0.3537816	2.74398081	MEDIA
Travieso/Tejero	0.03354	0.1641199	4.89288916	CORTA
Tejero/Travieso	0.03354	0.15676243	4.67354189	CORTA
El Indio/Temblador L1,2	0.18488	0.10644843	0.57577934	MEDIA
Temblador/El Indio L1,2	0.18488	0.53432034	2.89013761	MEDIA

Tabla 5.12 Clasificación de las líneas del sur de Anzoátegui

Nombre	ZL(pu)	ZS(pu)	SIR	Tipo
Anaco/El Roble	0.01172	0.17428051	14.8685277	CORTA
El Roble/Anaco	0.01172	0.20513226	17.5006069	CORTA
Anaco/El Tigre	0.33759	0.17428051	0.51624667	MEDIA
El Tigre/Anaco	0.33759	0.08909297	0.26390759	LARGA
Anaco/El Tigre III	0.30054	0.17428051	0.57989348	MEDIA

El Tigre III/Anaco	0.30054	0.17373019	0.57806239	MEDIA
Anaco/Rebombeo II	0.21763	0.17428051	0.80081848	MEDIA
Rebombeo II /Anaco	0.21763	0.2545591	1.16969839	MEDIA
El Tigre II/El Esfuerzo	0.02311	0.13216361	5.71978254	CORTA
El Esfuerzo/El Tigre II	0.02311	0.129344	5.59775548	CORTA
El Esfuerzo/El Tigre	0.02311	0.129344	5.59775548	CORTA
El Tigre/El Esfuerzo	0.02311	0.08909297	3.85576946	MEDIA
El Tigre/El Tigre II	0.03081	0.08909297	2.89182733	MEDIA
El Tigre II/El Tigre	0.03081	0.13216361	4.28983726	CORTA
El Tigre/El Tigre III	0.03993	0.08909297	2.23097138	MEDIA
El Tigre III /El Tigre	0.03993	0.17373019	4.35036677	CORTA
El Tigre II/Santa Bárbara	0.44052	0.13216361	0.30002016	LARGA
Santa Bárbara/El Tigre II	0.44052	0.31629094	0.71800141	MEDIA
Rebombeo I/Rebombeo II	0.25201	0.3537816	1.40383501	MEDIA
Rebombeo II/Rebombeo I	0.25201	0.2545591	1.0101118	MEDIA
El Roble/Los Pilones	0.01613	0.20513226	12.7183341	CORTA
Los Pilones/El Roble	0.01613	0.24878754	15.4249903	CORTA

Tabla 5.13 Clasificación de las líneas del norte de Anzoátegui

Nombre	ZL(pu)	ZS(pu)	SIR	Tipo
Barbacoa/Guaraguao	0.08588	0.0868517	1.0113289	MEDIA
Guaraguao/Barbacoa	0.08588	0.20827735	2.42524784	MEDIA
Barbacoa/Isleta	0.19350	0.0868517	0.44885153	LARGA
Isleta/Barbacoa	0.19350	0.61247275	3.16527279	MEDIA
Barbacoa/Barcelona	0.05451	0.0868517	1.59318128	MEDIA
Barcelona/Barbacoa	0.05451	0.12374768	2.26998995	MEDIA
Barcelona/Cuartel	0.03911	0.12374768	3.16399496	MEDIA
Cuartel/Barcelona	0.03911	0.22963341	5.87129328	CORTA
Barcelona/Parchita	0.02178	0.12374768	5.68236872	CORTA
Parchita/Barcelona	0.02178	0.13356228	6.1330452	CORTA
Barbacoa/Chuparín	0.08468	0.0868517	1.02568812	MEDIA
Chuparín/Barbacoa	0.08468	0.15985709	1.88785609	MEDIA
Chuparín/Guanta II L1	0.04416	0.15985709	3.61988584	MEDIA
Guanta II/Chuparín L1	0.04416	0.09868378	2.23464605	MEDIA
Chuparín/Guanta II L2	0.02958	0.15985709	5.40496245	CORTA
Guanta II/Chuparín L2	0.02958	0.09868378	3.33661847	MEDIA
Chuparín/Paraíso	0.04117	0.15985709	3.88290542	MEDIA
Paraíso/Chuparín	0.04117	0.27159883	6.59709605	CORTA
Cuartel/Lecherías	0.01647	0.22963341	13.9444051	CORTA
Lecherías/Cuartel	0.01647	0.27439765	16.6626978	CORTA
Guanta/Bordones	0.22181	0.14964922	0.67467055	MEDIA
Bordones/Guanta	0.22181	0.28710159	1.29435345	MEDIA

Guanta II/Cumana II	0.19376	0.09868378	0.50931103	MEDIA
Cumana II/Guanta II	0.19376	0.26301215	1.35741651	MEDIA
Guanta/Guanta II L1	0.03296	0.14964922	4.53994824	CORTA
Guanta II/Guanta L1	0.03296	0.09868378	2.99379596	MEDIA
Guanta/Guanta II L2	0.05139	0.14964922	2.9117552	MEDIA
Guanta II/Guanta L2	0.05139	0.09868378	1.92011021	MEDIA
Guanta/Guaraguao	0.03766	0.14964922	3.97403306	MEDIA
Guaraguao/Guanta	0.03766	0.20827735	5.53094132	CORTA
Guanta II/Barcelona	0.04382	0.09868378	2.25197661	MEDIA
Barcelona/Guanta II	0.04382	0.12374768	2.82393818	MEDIA
Isleta/Clarines	0.09881	0.61247275	6.19869464	CORTA
Clarines/Isleta	0.09881	0.88184111	8.92490943	CORTA
Parchita/Barbacoa	0.03585	0.13356228	3.72596113	MEDIA
Barbacoa/Parchita	0.03585	0.0868517	2.42288513	MEDIA

Tabla 5.14 Clasificación de las líneas del estado Sucre

Nombre	ZL(pu)	ZS(pu)	SIR	Tipo
Cariaco/Cumana II	0.27419	0.2003266	0.73061511	MEDIA
Cumaná II/Cariaco	0.27419	0.26301215	0.95923684	MEDIA
Carúpano/ Irapa	0.32936	0.32749519	0.99435133	MEDIA
Irapa/Carúpano	0.32936	1.22569631	3.72149816	MEDIA
Casanay/Cariaco	0.03114	0.13321056	4.27844623	CORTA
Cariaco/Casanay	0.03114	0.2003266	6.4340736	CORTA
Casanay/Carúpano L1	0.15238	0.13321056	0.87420001	MEDIA
Carúpano/Casanay L1	0.15238	0.32749519	2.14920117	MEDIA
Casanay/Carúpano L2	0.13586	0.13321056	0.98050451	MEDIA
Carúpano/Casanay L2	0.13586	0.32749519	2.41054841	MEDIA
Casanay/Chacopata L1,2	0.09482	0.13321056	1.40486097	MEDIA
Casanay/Cumana II	0.29230	0.13321056	0.45572745	LARGA
Cumana II /Casanay	0.29230	0.26301215	0.89979243	MEDIA
Cumana II/Bordones	0.01883	0.26301215	13.9689167	CORTA
Bordones/Cumaná II	0.01883	0.28710159	15.2483382	CORTA
Cumana II/Manzanares	0.03816	0.26301215	6.89249674	CORTA
Manzanares/Cumaná II	0.03816	0.32058214	8.40117605	CORTA
Cumana II/Tres Picos	0.00056	0.26301215	465.63062	CORTA
Tres Picos/Cumaná II	0.00056	0.26454862	468.350743	CORTA
Cumana III/ Manzanares	0.02181	0.31172516	14.2958728	CORTA
Manzanares/Cumana III	0.02181	0.32058214	14.7020588	CORTA
Cumana II/Cumana III	0.02544	0.26301215	10.3387461	CORTA
Cumana III/Cumaná II	0.02544	0.31172516	12.2536059	CORTA
Irapa/Guiria	0.12763	1.22569631	9.60386393	CORTA
Guiria/Irapa	0.12763	1.57376255	12.3311144	CORTA

Tabla 5.15 Clasificación de las líneas del estado Bolívar

Nombre	ZL(pu)	ZS(pu)	SIR	Tipo
Bolívar/Farallones L1, L2	0.15825611	0.19118389	1.20806644	MEDIA
Farallones/Bolívar L1, L2	0.15825611	0.39718193	2.50974161	MEDIA

5.3.1 Nuevo criterio

Aunque se mantiene los mismos criterios de ajuste para la zonas 1 y 2 se le agrega a estas zonas el efecto de fuentes intermedias como calculo adicional, en la zona 3 se emplea un criterio diferente al utilizado, el cual toma como valor de ajuste el menor de las dos ecuaciones; todo esto con la utilización de la herramienta computacional DIGSILENT POWER FACTORY.

5.3.1.1 Ajuste de la Zona 1

La primera zona de la protección de distancia es normalmente de operación instantánea y tiene por finalidad proveer un despeje rápido de fallas que ocurran a lo largo de la línea. La Zona 1 normalmente se ajusta entre un 80 ó 90% de la impedancia de la línea, para evitar operaciones innecesarias cuando se presente una falla más allá de la barra remota por efecto de la componente de corriente directa que se presenta dependiendo del momento de la onda senoidal de corriente en el que se presenta la falla (sobrealcance):

$$Z_1 = K * Z_L$$
 Ec.5.2

Donde:

Z1: Ajuste de Zona 1

K: Constante

ZL: Impedancia de secuencia positiva de la línea.

Como criterio se recomienda un factor K del 80% de la impedancia de la línea.

Tiempo de Zona 1: Instantáneo (0 mseg).

5.3.1.1.1 Análisis del efecto "Infeed" en Zona 1

Cuando ocurre una falla con impedancia de falla (común en fallas a tierra), la inyección de corriente del otro extremo de la línea, introduce un error de medida en el extremo inicial, denominado efecto "Infeed".

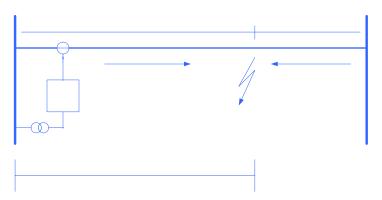


Figura 5.2 Efecto infeed en zona 1 [5]

De la figura 5.2 se puede deducir la siguiente ecuación:

$$V_1 = I_1 * Z_1 + R_f * (I_1 + I_2)$$
 Ec.5.3

Si se divide la ecuación anterior por I1 se obtiene:

$$\frac{V_1}{I_1} = Z_{aparente} = Z_1 + R_f * (1 + \frac{I_2}{I_1})$$
 Ec.5.4

Es decir que la impedancia aparente vista por el relé para una falla en Zona 1 de la línea se ve afectada por la resistencia de falla, multiplicada por un factor I2/I1, pudiéndose presentar los siguientes casos:

- Si I2/I1 es cero o cercano a cero, la impedancia vista por el relé de la subestación no sería afectada significativamente por el efecto "Infeed"
- Si la corriente l2 es muy grande o l1 muy pequeña, el término l2/l1 sería alto, ocasionando subalcance en el relé dado que vería un valor de impedancia mayor ó una falla más lejana (dependiendo del valor de la resistencia de falla y las corrientes asociadas). [5]

5.3.1.1.2 Resistencia de Falla

El valor de la resistencia puede ser particularmente grande para fallas a tierra, que representa la falla más común en las líneas de transmisión causadas por un flashover en el aislador, donde el lazo fallado incluye la impedancia de la torre, la resistencia de puesta a tierra y la resistencia de arco. Ya que no hay una formula exacta para calcular la resistencia de arco porque es difícil determinar la longitud fuera de las condiciones de laboratorio, se toma el mayor de las formulas siguientes convertidas a unidades métricas: la primera formula recomendada por ELMORE (440V/ft de arco para I>100amp), la segunda formula recomendada por la guía de aplicaciones de los relés de protección y MASON para (440V/ft de arco para I<1000amp) y la tercera formula recomendada por MASON (550V/ft de arco para I>1000amp).

$$R_{arc} = \frac{1444*L}{I} \text{ ohm}$$
 Ec.5.5

$$R_{arc} = \frac{2667 * L}{1.4 * I}$$
 ohm Ec.5.6

$$R_{arc} = \frac{1804 * L}{I} \quad ohm$$
 Ec.5.7

Para el cálculo se estima una longitud de una cadena de aisladores "L" de 1.56 m para una torre típica de 115kV y una falla mínima de 1000amp, sumado a una resistencia típica de 5Ω para la resistencia de puesta a tierra y una resistencia de torre de 12Ω , se considera una resistencia de falla total mínima de 20Ω para el ajuste de alcance resistivo de una función de protección de distancia. [6]

5.3.1.1.3 Valores obtenidos para una falla monofásica con R_F

Tabla 5.16 Valores de corrientes monofásica en Monagas

NOMBRE	INFEED ZONA1	
	I1(kA)	I2(kA)
Boulevard/Quiriquire	1.171	1.388
Quiriquire/Boulevard	0.838	1.758
El Indio/Jusepín	0.982	2.004
Jusepín/El Indio	0.724	2.408
El Indio/La Paz L1	1.841	1.227
La Paz/El Indio L1	0.333	2.994
El Indio/La Paz L2	1.841	1.227
La Paz/El Indio L2	0.333	2.994
El Indio/Maturín L1	1.666	1.567
Maturín/El Indio L1	0.532	2.845
El Indio/Maturín L2	1.597	1.623
Maturín/El Indio L2	0.538	2.825
El Indio/Muscar	0.891	2.717

Muscar/El Indio	0.773	2.345
Maturín/Boulevard	2.196	0.563
Boulevard/Maturín	0.210	2.883
Maturín/Jusepín	0.813	2.076
Jusepín/Maturín	0.826	2.073
Maturín/Quiriquire	1.473	1.121
Quiriquire/Maturín	0.380	2.573
Santa Bárbara/Travieso	0.613	2.268
Travieso/Santa Bárbara	1.709	0.946
Tejero/Muscar	0.500	2.729
Muscar/Tejero	2.148	0.912
Temblador /Tucupita	0.645	1.112
Tucupita/Temblador	0.483	1.488
Travieso/Rebombeo I	1.507	0.635
Rebombeo I/Travieso	0.411	2.302
Travieso/Tejero	1.301	1.698
Tejero/Travieso	1.203	1.796
El Indio/Temblador	0.715	1.388
Temblador/El Indio	0.481	2.009

Tabla 5.17 Valores de corrientes monofásicas en el sur de Anzoátegui

NOMBRE	INFEED ZONA1	
HOMBILE	11(kA)	I2(kA)
Anaco/El Roble	3.104	0.255
El Roble/Anaco	0.159	3.289
Anaco/El Tigre	0.608	2.099
El Tigre/Anaco	0.665	1.992
Anaco/El Tigre III	0.760	1.718
El Tigre III/Anaco	0.624	2.095
Anaco/Rebombeo II	1.007	1.387
Rebombeo II /Anaco	0.554	2.348
El Tigre II/El Esfuerzo	1.240	2.010
El Esfuerzo/El Tigre II	1.405	1.828
El Roble/Los Pilones	3.099	0.000
Los Pilones/El Roble	0.000	3.273
El Esfuerzo/El Tigre	0.262	3.227
El Tigre/El Esfuerzo	2.456	0.858
El Tigre/El Tigre II	2.107	1.167
El Tigre II/El Tigre	0.363	3.103
El Tigre/El Tigre III	2.688	0.406
El Tigre III /El Tigre	0.242	3.202
El Tigre II/Santa Bárbara	0.662	1.364
Santa Bárbara/El Tigre II	0.500	1.781

Rebombeo I/Rebombeo II	0.607	1.587
Rebombeo II/Rebombeo I	0.851	1.083

Tabla 5.18 Valores de corrientes monofásicas en el norte de Anzoátegui

		EED
NOMBRE	ZOI	
Dark and Warrens	11(kA)	I2(kA)
Barbacoa/Guaraguao	0.99	1.67
Guaraguao/Barbacoa	0.55	2.47
Barbacoa/Isleta	1.652	0.199
Isleta/Barbacoa	0.088	2.855
Barbacoa/Barcelona	1.368	1.908
Barcelona/Barbacoa	0.633	2.778
Barcelona/Cuartel	2.555	0.517
Cuartel/Barcelona	0.314	2.943
Barcelona/Parchita	1.699	1.560
Parchita/Barcelona	1.071	2.237
Barbacoa/Chuparín	1.214	1.960
Chuparín/Barbacoa	0.688	2.653
Chuparín/Guanta II L1	0.555	2.839
Guanta II/Chuparín L1	1.438	1.811
Chuparín/Guanta II L2	0.535	2.888
Guanta II/Chuparín L2	1.799	1.488
Chuparín/Paraíso	2.719	0.000
Paraíso/Chuparín	0.000	3.139
Cuartel/Lecherías	2.772	0.000
Lecherías/Cuartel	0.000	2.963
Guanta/Bordones	1.018	1.217
Bordones/Guanta	0.492	2.329
Guanta II/Cumana II	1.03	1.22
Cumana II/Guanta II	0.48	2.33
Guanta/Guanta II L1	0.846	2.928
Guanta II/Guanta L1	1.414	1.991
Guanta/Guanta II L2	0.774	2.616
Guanta II/Guanta L2	1.136	2.210
Guanta/Guaraguao	2.425	0.580
Guaraguao/Guanta	0.343	2.989
Guanta II/Barcelona	1.538	1.766
Barcelona/Guanta II	0.819	2.592
Isleta/Clarines	1.178	0.277
Clarines/Isleta	0.237	1.366
Parchita/Barbacoa	0.459	3.001
Barbacoa/Parchita	2.020	1.259

Tabla 5.19 Valores de corrientes monofasicas en Sucre

NOMBRE	INFEED ZONA1	
TO III DILL	I1(kA)	12(kA)
Cariaco/Cumaná II	0.731	1.412
Cumaná II/Cariaco	0.608	1.739
Carúpano/ Irapa	0.842	0.000
Irapa/Carúpano	0.000	1.602
Casanay/Cariaco	2.639	0.329
Cariaco/Casanay	0.218	3.047
Casanay/Carúpano L1	1.297	0.928
Carúpano/Casanay L1	0.298	2.556
Casanay/Carúpano L2	1.401	0.862
Carúpano/Casanay L2	0.278	2.643
Casanay/Chacopata	0.837	1.872
Casanay/Cumaná II	0.781	1.368
Cumaná II /Casanay	0.516	2.064
Cumaná II/Bordones	1.604	0.759
Bordones/Cumaná II	0.701	1.724
Cumaná II/Manzanares	1.405	0.781
Manzanares/Cumaná II	0.210	2.141
Cumaná II/Tres Picos	1.965	0.976
Tres Picos/Cumaná II	0.245	2.202
Cumaná III/ Manzanares	1.078	1.078
Manzanares/Cumaná III	0.764	1.425
Cumaná II/Cumaná III	1.705	0.533
Cumaná III/Cumaná II	0.142	2.239
Irapa/Guiria	0.593	0.000
Guiria/Irapa	0.000	0.684

Tabla 5.20 Valores de corrientes monofásicas en Bolívar

NOMBRE	INFEED ZONA1	
	I1(kA)	12(kA)
Bolívar/Farallones	1.343	0.894
Farallones/Bolívar	0.285	2.566

5.3.1.2 Ajuste de la Zona 2

El objetivo principal de esta zona es proteger completamente la línea en consideración y actuar como zona de respaldo ante la no operación de la

Zona 1 de las líneas ubicadas en la subestación remota. Como valor mínimo de ajuste se escoge el 120% de la impedancia de la línea a proteger, dado que si se escoge un valor inferior, los errores de los transformadores de instrumentos (CT y PT), el acoplamiento mutuo de secuencia cero en circuitos paralelos y el valor de la impedancia de falla, pueden producir subalcance en el relé, es decir que el relé no verá la falla en Zona 2, sino más allá y por lo tanto operará en un tiempo muy largo (Tiempo de Zona 3).

$$Z_2 = K * Z_L$$
 Ec.5.8

Donde:

Z2: Ajuste de Zona 2

K: Constante, siendo este factor del 120% de la impedancia de la línea.

ZL: Impedancia de secuencia positiva de la línea.

La Zona 2 no debe operar para fallas en los niveles secundarios de los transformadores existentes en la subestación remota (115kV, 34.5kV ó 13.8kV). Para evitar esto, el ajuste de la Zona 2 sería, como máximo, igual a la suma de la impedancia total de la línea a proteger más el 80% de la impedancia equivalente de los transformadores existentes en la subestación remota. La impedancia equivalente de cada transformador se determina aplicando la siguiente expresión:

$$Z_{EQ}(\Omega) = \frac{X_{PU} * kV^2}{MVA}$$
 Ec.5.9

5.3.1.2.1 Análisis del efecto "Infeed" en Zona 2

El efecto "Infeed" en Zona 2 se presenta debido a la existencia de fuentes intermedias que alimentan la falla ver figura 5.3. Cuando ocurre una falla, la impedancia que ve el relé, denominada Impedancia aparente (Zaparente), se calcula de la siguiente manera:

$$V_1 = I_1 * Z_1 + Z_2 * I_2$$
 Ec.5.10

La impedancia aparente vista por el relé es: $Z_{aparente} = \frac{V_1}{I_1}$

$$Z_{aparente} = \frac{[Z_1 * I_1 + Z_2 * I_2]}{I_1} = Z_1 + \frac{I_2}{I_1} * Z_2$$

$$Z_{anarente} = Z_1 + K * Z_2$$
 Ec.5.11

$$K = \frac{I_2}{I_1}$$
 = Factor Infeed

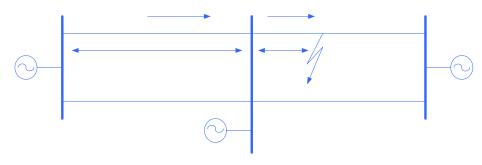


Figura 5.3 Efecto Infeed en Zona 2 [5]

l2 Incluye el aporte de los demás circuitos, diferentes de la línea bajo coordinación, que aportan al cortocircuito. El ajuste de la zona 2 se hace incluyendo el efecto "Infeed", razón por la cual en caso de que las fuentes intermedias desaparezcan, el relé queda sobrealcanzando.

Para verificar que este efecto no le produzca disparos indeseados o que no se requieran tiempos extendidos de zona 2 para coordinar con la zona 2 de relés inmediatamente adyacentes, se debe calcular la impedancia aparente ante una falla en el 99% de la línea adyacente más corta (u otra adyacente más crítica en el caso de que tenga bajos aportes de cortocircuito y longitudes pequeñas), observando los aportes de corrientes por todas las líneas adyacentes a la subestación donde está la línea protegida y abriendo luego la línea que más aporta a la falla, de tal forma que se obtenga la topología más crítica que acerque la impedancia aparente al valor de ajuste de Zona 2.

Tiempo de zona 2: Para la selección del tiempo de disparo de la Zona 2 se debe tener en cuenta la existencia o no de un esquema de teleprotección en la línea. Si la línea cuenta con esquema de teleprotección se puede seleccionar un tiempo de 400 mseg para esta zona; si no se dispone de teleprotección este tiempo se determina mediante un análisis de estabilidad del sistema ante contingencias en el circuito en consideración. Este tiempo (tiempo crítico de despeje de fallas ubicadas en Zona 2) puede oscilar entre 150 mseg. y 250 mseg., dependiendo de la longitud de la línea y de las condiciones de estabilidad del sistema. [5]

5.3.1.2.2 Valores obtenidos con una falla trifásica

Tabla 5.21 Valores de corrientes trifasicas en Monagas

NOMBRE	INFEED ZONA2	
NOWIDE	_	I2(kA)
Boulevard/Quiriquire	1.932	2.165
Quiriquire/Boulevard	1.259	1.259
El Indio/Jusepín	2.137	3.742
Jusepín/El Indio	1.285	11.366
El Indio/La Paz L1	3.807	3.807
La Paz/El Indio L1	0.000	11.884
El Indio/La Paz L2	3.807	3.807
La Paz/El Indio L2	0.000	11.884
El Indio/Maturín L1	3.765	4.322
Maturín/El Indio L1	0.347	10.022
El Indio/Maturín L2	4.880	5.470
Maturín/El Indio L2	0.335	10.080
El Indio/Muscar	1.922	3.300
Muscar/El Indio	1.500	11.366
Maturín/Boulevard	4.229	4.229
Boulevard/Maturín	0.105	4.312
Maturín/Jusepín	1.606	3.742
Jusepín/Maturín	1.844	2.415
Maturín/Quiriquire	2.478	2.718
Quiriquire/Maturín	0.128	4.312
Santa Bárbara/Travieso	1.260	2.325
Travieso/Santa Bárbara	2.190	2.527
Tejero/Muscar	1.379	3.300
Muscar/Tejero	5.886	5.886
Temblador /Tucupita	0.627	1.711
Tucupita/Temblador	0.723	3.096
Travieso/Rebombeo I	2.249	2.249
Rebombeo I/Travieso	1.065	2.325
Travieso/Tejero	3.054	3.054
Tejero/Travieso	2.964	3.951
El Indio/Temblador	0.664	2.793
Temblador/El Indio	0.627	11.386

Tabla 5.22 Valores de corrientes trifásicas en el sur de Anzoátegui

NOMBRE	INFEED ZONA2	
	I1(kA)	I2(kA)
Anaco/El Roble	9.331	9.331
El Roble/Anaco	0.114	5.547
Anaco/El Tigre	1.125	7.915
El Tigre/Anaco	1.267	8.193
Anaco/El Tigre III	1.410	1.410
El Tigre III/Anaco	1.257	8.193
Anaco/Rebombeo II	1.426	2.446
Rebombeo II /Anaco	0.960	8.193
El Tigre II/El Esfuerzo	3.248	3.248
El Esfuerzo/El Tigre II	3.494	4.334
El Roble/Los Pilones	NA	NA
Los Pilones/El Roble	0.000	0.000
El Esfuerzo/El Tigre	0.370	7.454
El Tigre/El Esfuerzo	7.113	7.113
El Tigre/El Tigre II	5.680	6.480
El Tigre II/El Tigre	0.103	7.915
El Tigre/El Tigre III	4.084	4.084
El Tigre III /El Tigre	1.116	7.915
El Tigre II/Santa Bárbara	1.034	1.568
Santa Bárbara/El Tigre II	0.846	6.521
Rebombeo I/Rebombeo II	1.020	2.446
Rebombeo II/Rebombeo I	1.417	1.417

Tabla 5.23 Valores de corrientes trifásicas en el norte de Anzoátegui

		EED NA2	
	11(kA)	I2(kA)	
Barbacoa/Guaraguao	1.87	1.87	
Guaraguao/Barbacoa	0.73	12.21	
Barbacoa/Isleta	2.28	2.28	
Isleta/Barbacoa	0.02	12.21	
Barbacoa/Barcelona	4.45	4.47	
Barcelona/Barbacoa	0.48	12.21	
Barcelona/Cuartel	6.62	6.64	
Cuartel/Barcelona	0.02	4.60	
Barcelona/Parchita	4.60	4.60	
Parchita/Barcelona	4.05	8.32	
Barbacoa/Chuparín	2.82	5.77	

Chuparín/Barbacoa	1.37	12.21
Chuparín/Guanta II L1	0.65	11.32
Guanta II/Chuparín L1	5.35	8.62
Chuparín/Guanta II L2	0.96	11.32
Guanta II/Chuparín L2	5.55	9.54
Chuparín/Paraíso	0.00	0.00
Paraíso/Chuparín	0.00	3.56
Cuartel/Lecherías	0.00	0.00
Lecherías/Cuartel	0.00	0.02
Guanta/Bordones	1.79	1.79
Bordones/Guanta	0.80	4.45
Guanta II/Cumana II	2.04	4.67
Cumana II/Guanta II	0.64	12.74
Guanta/Guanta II L1	1.95	12.74
Guanta II/Guanta L1	4.45	8.08
Guanta/Guanta II L2	1.25	12.74
Guanta II/Guanta L2	2.85	8.08
Guanta/Guaraguao	5.09	5.09
Guaraguao/Guanta	1.12	4.45
Guanta II/Barcelona	5.45	5.47
Barcelona/Guanta II	2.20	12.78
Isleta/Clarines	0.00	0.00
Clarines/Isleta	0.02	0.02
Parchita/Barbacoa	0.13	10.77
Barbacoa/Parchita	5.75	5.75

Tabla 5.24 Valores de corrientes trifasicas en Sucre

NOMBRE	INFEED ZONA2			
	I1(kA)	I2(kA)		
Cariaco/Cumaná II	1.300	4.263		
Cumaná II/Cariaco	0.974	0.974		
Carúpano/ Irapa	0.999	0.999		
Irapa/Carúpano	0.000	1.830		
Casanay/Cariaco	3.894	3.894		
Cariaco/Casanay	0.513	5.693		
Casanay/Carúpano L1	1.603	1.603		
Carúpano/Casanay L1	0.000	8.913		
Casanay/Carúpano L2	1.770	1.770		
Carúpano/Casanay L2	0.000	8.913		
Casanay/Chacopata	3.371	3.371		
Casanay/Cumaná II	1.357	4.495		
Cumaná II /Casanay	0.535	5.693		
Cumaná II/Bordones	2.832	2.832		

Bordones/Cumaná II	1.868	4.520
Cumaná II/Manzanares	2.391	2.391
Manzanares/Cumaná II	0.000	4.495
Cumaná II/Tres Picos	2.433	2.433
Tres Picos/Cumaná II	0.000	2.613
Cumaná III/ Manzanares	1.728	1.728
Manzanares/Cumaná III	1.195	1.195
Cumaná II/Cumaná III	3.154	3.154
Cumaná III/Cumaná II	0.000	4.495
Irapa/Guiria	0.000	0.000
Guiria/Irapa	0.000	0.000

Tabla 5.25 Valores de corrientes trifasicas en Bolívar

NOMBRE	INF ZOI I1(kA)	EED NA2 I2(kA)
Bolívar/Farallones	1.521	1.521
Farallones/Bolívar	0.410	3.687

5.3.1.3 Ajuste de la Zona 3

El objetivo de esta zona es servir de respaldo a las protecciones de las líneas adyacentes. Normalmente, su ajuste se extiende hasta el extremo opuesto de la línea adyacente de mayor impedancia, pero se debe garantizar que este alcance no detecte fallas ocurridas en las subestaciones de diferentes tensiones conectadas a través de los transformadores de potencia. Este alcance también debe limitarse si su valor se acerca al punto de carga normal de la línea.

El criterio recomendado para el ajuste de la Zona 3 es el menor valor de impedancia calculada para los dos casos que se citan a continuación:

Impedancia de la línea a proteger más el 80% de la impedancia equivalente de los transformadores en la barra remota.

$$Z_3 = Z_L + 0.8 * Z_{EOTRANF}$$
 Ec.5.12

Impedancia de la línea a proteger más el valor de Z de la línea adyacente con mayor impedancia, multiplicada por un factor de seguridad del 120%.

$$Z_3 = 1.2*(Z_I + Z_{IAMI})$$
 Ec.5.13

Donde:

Z₃: Ajuste de zona 3

Z_L: Impedancia de la línea a proteger

Z_{LAMI}: Impedancia de la línea adyacente de mayor impedancia

Tiempo de Zona 3: 1000 mseg.

5.3.1.4 Alcance resistivo

Para el ajuste del alcance resistivo de las diferentes zonas, se tiene como criterio general seleccionar un único valor para todas las diferentes zonas de la protección distancia, permitiendo establecer la coordinación a través de los tiempos de disparo de cada zona y logrando selectividad por medio de la impedancia de la línea vista por el relé hasta el sitio de la falla de alta impedancia. Los valores típicos resistivos son calculados como el 45% de la impedancia mínima de carga o de máxima transferencia del circuito en cuestión. Este valor de impedancia mínima de carga es calculado a través de la siguiente expresión:

$$Z_{MIN.CARGA} = \frac{V_L}{MCC * \sqrt{3}}$$
 Ec.5.14

Donde:

V_L: Tensión nominal mínima línea - línea.

MCC: Máxima Corriente de Carga

La Máxima Corriente de Carga se selecciona como el menor valor entre los siguientes cálculos:

- La CTMÁX: Es la máxima corriente del transformador de corriente y que normalmente corresponde al 120% de IMÁX primaria del CT.
- La corriente máxima de carga, es decir el 130% de IMÁX del conductor la cual corresponde al límite térmico del circuito o el límite que imponga cualquiera de los equipos de potencia asociados.
- La máxima corriente operativa de la línea IMAX: Este valor debe darlo el propietario de la línea o el operador de red. [5]

Nota: No se puede disminuir el alcance resistivo por debajo del valor de impedancia de zona 2

Tabla 5.26 Valores de alcance resistivo en Monagas

uz	NOMBRE	Corriente operativa de la línea [A]	Capacidad Térmica a 75°C [A]	1.2ImaxTC [A/prim]	Zmin.carga ohm/prim	Zmin.carga ohm/sec
10.45	Boulevard/Quiriquire	300	577	600	221.32	9.53
10.45	Quiriquire/Boulevard	300	577	600	221.32	9.53
17.42	El Indio/Jusepín	196	465	360	339.16	8.76
17.42	Jusepín/El Indio	196	465	360	339.11	8.76
2.09	El Indio/La Paz L1	556	577	600	119.36	25.70
2.09	La Paz/El Indio L1	556	577	600	119.36	25.70
10.45	El Indio/La Paz L2	556	577	600	119.36	5.14

17.42	La Paz/El Indio L2	556	577	360	119.36	3.08
10.45	El Indio/Maturín L1	254	465	600	261.51	11.26
8.71	Maturín/El Indio L1	245	465	720	270.68	13.98
17.42	El Indio/Maturín L2	254	465	360	261.51	6.76
8.71	Maturín/El Indio L2	245	465	720	270.68	13.98
10.45	El Indio/Muscar	263	465	600	252.65	10.88
8.71	Muscar/El Indio	263	465	720	252.65	13.05
17.42	Maturín/Boulevard	336	577	360	197.43	5.10
8.71	Boulevard/Maturín	336	577	720	197.43	10.20
17.42	Maturín/Jusepín	442	465	360	150.36	3.88
17.42	Jusepín/Maturín	442	465	360	150.36	3.88
17.42	Maturín/Quiriquire	250	577	360	265.48	6.86
10.45	Quiriquire/Maturín	250	577	600	265.48	11.43
8.71	Sta Bárbara/Travieso	520	577	720	127.69	6.60
8.71	Travieso/Sta Bárbara	520	577	720	127.69	6.60
10.45	Tejero/Muscar	334	465	600	199.09	8.57
10.45	Muscar/Tejero	334	465	600	199.09	8.57
17.42	Temblador /Tucupita	210	298	360	316.18	8.17
17.42	Tucupita/Temblador	210	298	360	316.18	8.17
8.71	Travieso/Rebombeo I	117	577	720	567.98	29.34
8.71	Rebombeo I/Travieso	117	577	720	567.98	29.34
8.71	Travieso/Tejero	400	465	720	165.99	8.58
8.71	Tejero/Travieso	400	465	720	165.99	8.58
17.42	El Indio/Temblador	190	465	360	349.46	9.03
17.42	Temblador/El Indio	190	465	360	349.46	9.03

Tabla 5.27 Valores de alcance resistivo en Anzoátegui sur

uz	NOMBRE	Corriente operativa de la línea [A]	Capacidad Térmica a 75 °C [A]	1.2ImaxTC [A/prim]	Zmin.carga ohm/prim	Zmin.carga ohm/sec
1.39	Anaco/El Roble	506	465	900	73.77	23.88
1.39	El Roble/Anaco	506	465	900	73.77	23.88
8.71	Anaco/El Tigre	132	465	720	504.16	26.05
8.71	El Tigre/Anaco	132	465	720	504.16	26.05
10.45	Anaco/El Tigre III	180	465	600	368.87	15.88
10.45	El Tigre III/Anaco	180	465	600	368.87	15.88
8.71	Anaco/Rebombeo II	129	577	720	513.12	26.51
8.71	Rebombeo II /Anaco	129	577	720	513.12	26.51
8.71	Tigre II/EI Esfuerzo	171	465	720	387.61	20.03
8.71	Esfuerzo/El Tigre II	171	465	720	387.61	20.03
8.71	El Esfuerzo/El Tigre	317	465	720	209.26	10.81
8.71	El Tigre/El Esfuerzo	317	465	720	209.26	10.81
8.71	El Tigre/El Tigre II	366	465	720	181.61	9.38

8.71	El Tigre II/El Tigre	366	465	720	181.61	9.38
8.71	El Tigre/El Tigre III	376	465	720	176.54	9.12
8.71	El Tigre III /El Tigre	376	465	720	176.54	9.12
10.45	Tigre II/Sta Bárbara	390	466	600	170.25	7.33
10.45	Sta Bárbara/ Tigre II	390	466	600	170.25	7.33
10.45	Rebombeo I/Rebombeo II	140	577	720	474.27	20.42
10.45	Rebombeo II/Rebombeo I	140	577	720	474.27	20.42
11.24	El Roble/Los Pilones	131	465	558	506.85	20.29
11.24	Los Pilones/El Roble	131	465	558	506.85	20.29

Tabla 5.28 Valores de alcance resistivo en Anzoátegui norte

uz	NOMBRE	Corriente operativa de la línea [A]	Capacidad Térmica a 75 °C [A]	1.2ImaxTC [A/prim]	Zmin.carga ohm/prim	Zmin.carga ohm/sec	
10.45	Barbacoa/Guaraguao	130	465	600	510.75	21.99	
10.45	Guaraguao/Barbacoa	130	465	600	510.75	21.99	
10.45	Barbacoa/Isleta	253	465	600	262.13	11.29	
10.45	Isleta/Barbacoa	253	465	600	262.13	11.29	
8.71	Barbacoa/Barcelona	500	577	720	132.90	6.87	
8.71	Barcelona/Barbacoa	500	577	720	132.90	6.87	
8.71	Barcelona/Cuartel	551	465	720	92.22	4.76	
8.71	Cuartel/Barcelona	551	465	720	92.22	4.76	
8.71	Barcelona/Parchita	466	577	720	142.64	7.37	
8.71	Parchita/Barcelona	466	577	720	142.64	7.37	
10.45	Barbacoa/Chuparín	262	465	600	253.23	10.90	
10.45	Chuparín/Barbacoa	262	465	600	253.23	10.90	
10.45	Chuparín/Guanta II L1	144	443	600	460.45	19.83	
2.09	Guanta II/Chuparín L1	144	443	600	460.45	99.14	
10.45	Chuparín/Guanta II L2	215	443	600	309.11	13.31	
2.09	Guanta II/Chuparín L2	215	443	600	309.11	66.56	
17.42	Chuparín/Paraíso	285	465	360	232.97	6.02	
17.42	Paraíso/Chuparín	285	465	360	232.97	6.02	
8.71	Cuartel/Lecherías	170	465	720	391.49	20.23	
8.71	Lecherías/Cuartel	170	465	720	391.49	20.23	
8.71	Guanta/Bordones	122	577	720	543.79	28.09	
8.71	Bordones/Guanta	122	577	720	543.79	28.09	
1.74	Guanta II/Cumana II	290	443	720	228.96	59.21	
8.71	Cumana II/Guanta II	290	443	720	228.96	11.83	
8.71	Guanta/Guanta II L1	120	443	720	553.31	28.59	
1.74	Guanta II/Guanta L1	120	443	720	553.31	143.10	
8.71	Guanta/Guanta II L2	270	443	720	245.92	12.71	
1.74	Guanta II/Guanta L2	270	443	720	245.92	63.60	
10.45	Guanta/Guaraguao	220	443	600	302.36	13.02	

10.45	Guaraguao/Guanta	220	443	600	302.36	13.02
1.74	Guanta II/Barcelona	404	465	720	164.35	42.50
8.71	Barcelona/Guanta II	404	465	720	164.35	8.49
17.42	Isleta/Clarines	127	465	360	521.17	13.46
17.42	Clarines/Isleta	127	465	360	521.17	13.46
8.71	Parchita/Barbacoa	479	577	720	138.76	7.17
1.04	Barbacoa/Parchita	479	577	1200	138.76	60.04

Tabla 5.29 Valores de alcance resistivo en Sucre

uz	NOMBRE	Corriente operativa de la línea [A]	Capacidad Térmica a 75 °C [A]	1.2ImaxTC [A/prim]	Zmin.carga ohm/prim	Zmin.carga ohm/sec	
17.42	Cariaco/Cumaná II	130	443	360	510.75	13.19	
17.42	Cumaná II/Cariaco	130	443	360	510.75	13.19	
17.42	Carúpano/ Irapa	191	465	360	348.36	9.00	
17.42	Irapa/Carúpano	191	465	360	348.36	9.00	
8.71	Casanay/Cariaco	179	298	720	371.14	19.17	
8.71	Cariaco/Casanay	179	298	720	371.14	19.17	
17.42	Casanay/Carúpano L1	285	298	360	233.04	6.02	
17.42	Carúpano/Casanay L1	285	298	360	233.04	6.02	
17.42	Casanay/Carúpano L2	319	465	360	208.06	5.37	
17.42	Carúpano/Casanay L2	319	465	360	208.06	5.37	
10.45	Casanay/Chacopata	428	577	600	155.17	6.68	
17.42	Casanay/Cumaná II	260	465	360	255.37	6.60	
17.42	Cumaná II /Casanay	260	465	360	255.37	6.60	
8.71	Cumaná II/Bordones	170	577	720	390.57	20.18	
8.71	Bordones/Cumaná II	170	577	720	390.57	20.18	
8.71	Cumaná II/Manzanares	178	577	720	372.55	19.25	
8.71	Manzanares/Cumaná II	178	577	720	372.55	19.25	
13.06	Cumaná II/3 Picos L1,2	366	443	480	181.24	6.24	
13.61	3 Picos/Cumaná II L1	366	443	461	181.24	5.99	
12.56	3 Picos/Cumaná II L2	366	443	499	181.24	6.49	
17.42	Cumaná III/ Manzanare	170	577	720	390.57	10.09	
8.71	Manzanare/Cumaná III	170	577	720	390.57	20.18	
8.71	Cumaná II/Cumaná III	250	577	720	265.86	13.74	
8.71	Cumaná III/Cumaná II	250	577	720	265.86	13.74	
26.136	Irapa/Guiria	102	465	240	653.23	11.25	
26.136	Guiria/Irapa	102	465	240	653.23	11.25	

Tabla 5.30 Valores de alcance resistivo en Bolívar

uz	NOMBRE	Corriente operativa de la línea [A]	Capacidad Térmica a 75 °C [A]	1.2ImaxTC [A/prim]	Zmin.carga ohm/prim	Zmin.carga ohm/sec
2.09	Bolívar/Farallones	338	577	600	196.44	42.30
1.39	Farallones/Bolívar	417	577	900	159.23	51.55

5.3.1.5 Valores completo de las zonas propuestas

A continuación se presentan todos los valores calculados por el criterio propuesto, para cada una de las tres zonas.

Tabla 5.31 Valores de ajuste propuesto completo de Monagas

NOMBRE	ZON 80° MAG OHM/	% ANG	ZONA Z1+20(1+ MAG A OHM/S	-12/I1) NG	ZON 120 MAG OHM/	% ANG	ZONA ZL+ZLAM MAG A OHM/S	IC(I2/I1) ANG	ZON ZL+0.8 MAG OHM/	ZEQT ANG	ZONA 1.2(ZL+Z MAG A OHM/S	LAMI) ANG	ZON ZL+0.8 MAG OHM/	ZEQT ANG
Boulevard/Quiriquire	0.773	75.1	4.445	9.7	1.159	75.1	1.255	75.1	2.669	20.5	2.704	75.1	2.669	20.5
Quiriquire/Boulevard	0.773	75.1	6.173	6.9	1.159	75.1	1.085	75.1	2.023	27.5	1.876	75.1	2.023	27.5
El Indio/Jusepín	0.772	70.2	3.822	11.0	1.158	70.2	0.983	70.5	4.147	12.6	2.561	70.2	4.147	12.6
Jusepín/El Indio	0.772	70.2	5.278	7.9	1.158	70.2	1.463	70.7	1.011	63.9	2.083	72.4	1.011	63.9
El Indio/La Paz L1	1.195	70.6	16.383	3.9	1.792	70.6	1.789	70.6	6.332	12.9	3.583	70.6	6.332	12.9
La Paz/El Indio L1	1.195	70.6	96.011	0.7	1.792	70.6	NA	٨	2.043	43.6	15.830	70.6	2.043	43.6
El Indio/La Paz L2	0.239	70.6	3.277	3.9	0.358	70.6	0.358	70.6	1.266	12.9	0.717	70.6	1.266	12.9
La Paz/El Indio L2	0.143	70.6	11.519	0.7	0.215	70.6	N <i>A</i>	۱	0.245	43.6	1.899	70.6	0.245	43.6
El Indio/Maturín L1	0.375	71.6	3.849	5.3	0.563	71.6	0.581	71.3	1.377	18.9	2.902	70.5	1.377	18.9
Maturín/El Indio L1	0.450	71.6	14.724	1.7	0.675	71.6	3.940	70.4	0.675	52.2	4.044	70.8	0.675	52.2
El Indio/Maturín L2	0.234	70.2	2.404	5.2	0.351	70.2	0.355	70.5	0.838	19.2	1.754	70.2	0.838	19.2
Maturín/El Indio L2	0.468	70.2	14.518	1.7	0.702	70.2	3.970	71.4	0.701	51.7	4.070	70.5	0.701	51.7
El Indio/Muscar	1.444	69.1	8.375	9.3	2.165	69.1	1.830	69.2	3.124	32.7	2.607	69.2	3.124	32.7
Muscar/El Indio	1.732	69.1	10.011	9.3	2.598	69.1	3.018	69.8	2.260	63.5	5.966	69.9	2.260	63.5
Maturín/Boulevard	0.287	75.1	1.542	10.4	0.430	75.1	0.475	75.1	1.077	18.8	1.126	75.1	1.077	18.8
Boulevard/Maturín	0.574	75.1	33.972	0.9	0.861	75.1	5.338	72.1	1.716	23.8	3.665	71.4	1.716	23.8
Maturín/Jusepín	0.936	70.2	4.484	11.3	1.403	70.2	1.194	70.5	4.260	15.0	2.561	70.2	4.260	15.0
Jusepín/Maturín	0.936	70.2	4.434	11.5	1.403	70.2	1.243	70.3	1.548	45.3	2.535	72.4	1.548	45.3
Maturín/Quiriquire	0.618	75.1	2.261	15.3	0.927	75.1	0.900	75.1	1.720	25.7	1.622	75.1	1.720	25.7
Quiriquire/Maturín	1.030	75.1	15.170	3.8	1.545	75.1	4.445	72.6	1.938	39.9	3.881	72.2	1.938	39.9
Santa Bárbara/Travieso	1.004	75.2	11.092	5.0	1.506	75.2	1.442	74.4	2.914	24.6	3.855	75.8	2.914	24.6
Travieso/Santa Bárbara	1.004	75.2	3.945	14.2	1.506	75.2	2.797	73.2	4.219	16.7	9.530	72.2	4.219	16.7
Tejero/Muscar	0.294	69.8	12.464	1.3	0.441	69.8	0.403	70.3	2.141	9.3	2.607	69.2	2.141	9.3

Muscar/Tejero	0.294	69.8	2.841	5.6	0.441	69.8	0.453	69.7	1.252	16.0	0.951	69.4	1.252	16.0
Temblador /Tucupita	2.644	63.7	4.908	28.9	3.966	63.7	5.448	68.2	3.600	55.4	8.692	69.9	3.600	55.4
Tucupita/Temblador	2.644	63.7	6.317	22.0	3.966	63.7	3.323	63.8	4.305	43.5	5.642	65.8	4.305	43.5
Travieso/Rebombeo I	1.566	76.2	3.943	22.7	2.349	76.2	2.723	76.2	3.960	28.7	6.941	76.2	3.960	28.7
Rebombeo I/Travieso	1.566	76.2	15.605	5.6	2.349	76.2	2.179	75.5	3.381	34.2	3.855	75.8	3.381	34.2
Travieso/Tejero	0.407	69.1	5.452	4.0	0.611	69.1	0.598	69.2	1.548	17.9	1.141	69.4	1.548	17.9
Tejero/Travieso	0.407	69.1	5.882	3.7	0.611	69.1	0.796	71.3	2.555	10.7	2.957	74.7	2.555	10.7
El Indio/Temblador L1,2	1.123	70.6	3.897	15.8	1.684	70.6	1.421	70.7	2.505	31.9	5.642	65.8	2.505	31.9
Temblador/El Indio L1,2	1.123	70.6	6.404	9.5	1.684	70.6	2.425	71.0	1.447	66.2	2.983	69.9	1.447	66.2

Tabla 5.32 Valores de ajuste propuesto completo de Anzoátegui sur

NOMBRE	ZON 80' MAG OHM/	% ANG	ZON/ Z1+20(1- MAG / OHM/S	H2/I1) ANG	ZON 120 MAG OHM/	% ANG	ZONA ZL+ZLAM MAG A OHM/S	C(I2/I1) ANG	ZON ZL+0.8 MAG OHM/	ZEQT ANG	ZON 1.2(ZL+: MAG OHM/	ZLAMI) ANG	ZON ZL+0.8 MAG OHM/	ZEQT ANG
Anaco/El Roble	0.892	76.2	15.805	3.1	1.338	76.2	1.424	75.3	5.757	10.8	3.175	73.7	5.757	10.8
El Roble/Anaco	0.892	76.2	312.235	0.2	1.338	76.2	48.967	72.8	3.424	18.4	39.881	71.7	3.424	18.4
Anaco/El Tigre	4.101	71.6	12.159	18.7	6.151	71.6	5.620	71.5	5.228	68.5	6.879	71.6	5.228	68.5
El Tigre/Anaco	4.101	71.6	11.169	20.4	6.151	71.6	5.355	71.8	5.295	66.7	11.628	71.6	5.295	66.7
Anaco/El Tigre III	3.043	71.6	7.759	21.8	4.564	71.6	3.905	71.6	4.654	50.8	5.171	71.6	4.654	50.8
El Tigre III/Anaco	3.043	71.6	9.739	17.2	4.564	71.6	3.997	71.8	3.947	66.1	9.692	71.6	3.947	66.1
Anaco/Rebombeo II	2.644	76.2	6.608	22.9	3.965	76.2	4.617	76.2	4.838	41.6	8.557	76.2	4.838	41.6
Rebombeo II /Anaco	2.644	76.2	12.916	11.5	3.965	76.2	3.608	76.2	3.449	68.5	10.109	73.4	3.449	68.5
El Tigre II/El Esfuerzo	0.281	70.2	6.119	2.5	0.421	70.2	0.421	70.2	3.482	5.4	0.843	70.2	3.482	5.4
El Esfuerzo/El Tigre II	0.281	70.2	5.385	2.8	0.421	70.2	0.467	70.2	1.078	17.8	8.448	71.5	1.078	17.8
El Esfuerzo/El Tigre	0.281	70.2	30.675	0.5	0.421	70.2	2.237	70.2	0.532	38.4	6.573	71.5	0.532	38.4
El Tigre/El Esfuerzo	0.281	70.2	3.205	4.7	0.421	70.2	0.421	70.2	3.482	5.4	0.843	70.2	3.482	5.4
El Tigre/El Tigre II	0.374	70.2	3.711	5.4	0.561	70.2	0.548	70.2	1.153	22.4	8.587	71.5	1.153	22.4
El Tigre II/El Tigre	0.374	70.2	22.087	1.1	0.561	70.2	5.859	70.2	0.634	44.0	6.712	71.5	0.634	44.0
El Tigre/El Tigre III	0.485	71.6	2.834	9.3	0.728	71.6	1.519	71.6	2.348	14.2	6.204	71.6	2.348	14.2
El Tigre III /El Tigre	0.485	71.6	32.835	0.8	0.728	71.6	1.103	71.0	0.755	49.6	6.879	71.6	0.755	49.6
Tigre II/Santa Bárbara	4.460	71.6	8.408	30.2	6.690	71.6	5.891	71.8	7.184	47.4	7.943	72.2	7.184	47.4
Santa Bárbara/Tigre II	4.460	71.6	10.987	22.7	6.690	71.6	6.026	71.5	5.858	64.5	7.157	71.5	5.858	64.5
Rebombeo I/Rebombeo II	2.551	76.2	7.923	18.2	3.827	76.2	4.316	76.2	4.397	44.8	4.292	75.6	4.397	44.8
Rebombeo II/Rebombeo I	2.551	76.2	5.542	26.6	3.827	76.2	3.516	76.2	4.502	43.5	5.785	76.2	4.502	43.5
El Roble/Los Pilones	0.152	71.9	1.832	4.5	0.228	71.9	NA		2.941	3.5	N.	A	2.941	3.5
Los Pilones/El Roble	0.152	71.9	NA		0.228	71.9	NA		0.747	14.0	0.393	73.715	0.747	14.0

Tabla 5.33 Valores de ajuste propuesto completo de Anzoátegui norte

NOMBRE	ZON 80° MAG OHM/	% ANG	ZONA Z1+20(1- MAG A OHM/S	+12/11) ANG	ZON 120 MAG OHM/	% ANG	ZONA ZL+ZLAMO MAG A OHM/S	C(I2/I1) ANG	ZON ZL+0.8 MAG OHM/	ZEQT ANG	ZONA 1.2(ZL+Z MAG A OHM/S	LAMI) ANG	ZON ZL+0.8 MAG OHM/	ZEQT ANG
Barbacoa/Guaraguao	1.869	70.2	6.021	17.0	2.803	70.2	2.432	70.2	2.998	47.2	3.375	70.3	2.998	47.2

Guaraguao/Barbacoa	1.869	70.2	11.348	8.9	2.803	70.2	3.843	72.4	2.376	67.7	5.741	70.9	2.376	67.7
Barbacoa/Isleta	1.959	71.6	3.330	33.9	2.939	71.6	2.699	71.6	3.892	36.7	4.439	71.6	3.892	36.7
Isleta/Barbacoa	1.959	71.6	64.651	1.6	2.939	71.6	63.988	75.6	2.487	69.1	4.243	71.2	2.487	69.1
Barbacoa/Barcelona	0.662	75.1	5.705	6.4	0.993	75.1	0.894	75.1	1.441	33.7	1.791	73.2	1.441	33.7
Barcelona/Barbacoa	0.662	75.1	12.560	2.9	0.993	75.1	3.585	75.6	0.872	66.5	4.517	72.4	0.872	66.5
Barcelona/Cuartel	0.475	71.6	2.946	8.8	0.713	71.6	0.644	71.6	1.811	18.1	1.013	71.6	1.811	18.1
Cuartel/Barcelona	0.475	71.6	23.972	1.1	0.713	71.6	15.813	75.2	1.302	25.6	1.705	73.6	1.302	25.6
Barcelona/Parchita	0.265	75.4	4.478	3.3	0.397	75.4	0.440	75.5	4.104	4.5	1.050	75.6	4.104	4.5
Parchita/Barcelona	0.265	75.4	7.163	2.0	0.397	75.4	0.575	73.8	1.116	16.7	1.390	75.2	1.116	16.7
Barbacoa/Chuparín	0.857	71.9	5.333	8.8	1.286	71.9	1.225	72.0	2.078	29.4	1.956	71.9	2.078	29.4
Chuparín/Barbacoa	0.857	71.9	9.595	4.9	1.286	71.9	1.881	73.6	1.112	66.4	4.225	71.7	1.112	66.4
Chuparín/Guanta II L1	0.447	73.2	11.841	2.1	0.671	73.2	1.871	72.9	0.675	52.5	3.612	71.3	0.675	52.5
Guanta II/Chuparín L1	2.236	73.2	22.369	5.5	3.353	73.2	3.397	73.2	8.622	18.1	9.783	72.4	8.622	18.1
Chuparín/Guanta II L2	0.299	72.8	12.337	1.3	0.449	72.8	1.354	72.6	0.508	44.8	3.391	71.2	0.508	44.8
Guanta II/Chuparín L2	1.497	72.8	17.983	4.6	2.246	72.8	2.765	72.4	8.143	12.7	8.675	72.1	8.143	12.7
Chuparín/Paraíso	0.250	71.6	1.250	10.9	0.375	71.6	NA		0.962	17.9	NA		0.962	17.9
Paraíso/Chuparín	0.250	71.6	NA	١	0.375	71.6	NA		1.029	16.7	1.146	71.8	1.029	16.7
Cuartel/Lecherías	0.200	71.6	2.367	4.6	0.300	71.6	NA		2.408	5.7	NA		2.408	5.7
Lecherías/Cuartel	0.200	71.6	NA		0.300	71.6	NA		1.630	8.4	1.293	74.3	1.630	8.4
Guanta/Bordones	2.694	71.9	6.411	23.5	4.041	71.9	3.425	71.9	4.499	45.4	4.384	71.8	4.499	45.4
Bordones/Guanta	2.694	71.9	14.234	10.4	4.041	71.9	3.926	72.0	3.597	62.9	4.978	72.1	3.597	62.9
Guanta II/Cumana II	11.78	70.9	31.043	21.0	17.67	70.9	14.741	70.9	N/		44.328	71.3	N/	
Cumana II/Guanta II	2.354	70.9	14.445	8.9	3.530	70.9	4.739	71.6	3.053	65.6	4.466	71.3	3.053	65.6
Guanta/Guanta II L1	0.400	72.6	10.371	2.1	0.601	72.6	1.088	72.7	0.656	46.7	4.130	71.1	0.656	46.7
Guanta II/Guanta L1	2.004	72.6	28.344	3.9	3.006	72.6	3.546	72.0	4.429	32.7	23.234	72.0	4.429	32.7
Guanta/Guanta II L2	0.624	72.8	10.260	3.3	0.936	72.8	1.697	72.8	0.915	54.5	4.466	71.3	0.915	54.5
Guanta II/Guanta L2	3.125	72.8	34.911	4.9	4.688	72.8	5.328	72.7	5.571	42.1	24.917	72.1	5.571	42.1
Guanta/Guaraguao	0.381	70.5	2.524	8.2	0.572	70.5	0.738	71.0	1.477	17.7	2.140	71.5	1.477	17.7
Guaraguao/Guanta	0.381	70.5	18.723	1.1	0.572	70.5	0.808	71.4	0.794	34.5	3.940	71.7	0.794	34.5
Guanta II/Barcelona	2.665	70.9	25.685	5.6	3.997	70.9	3.666	71.3	6.798	27.6	8.967	73.2	6.798	27.6
Barcelona/Guanta II	0.532	70.9	9.751	3.0	0.798	70.9	1.188	71.7	0.815	50.6	4.329	70.9	0.815	50.6
Isleta/Clarines	0.600	71.6	1.705	19.5	0.900	71.6	NA		2.039	20.4	NA		2.039	20.4
Clarines/Isleta	0.600	71.6	7.975	4.1	0.900	71.6	1.044	71.6	1.793	23.4	2.663	71.6	1.793	23.4
Parchita/Barbacoa	0.435	75.8	17.421	1.4	0.653	75.8	14.264	75.1	0.592	63.0	4.177	72.2	0.592	63.0
Barbacoa/Parchita	3.647	75.8	32.310	6.3	5.470	75.8	5.115	75.8	34.97	7.3	8.792	75.6	34.97	7.3

Tabla 5.34 Valores de ajuste propuesto completo de Sucre

NOMBRE	ZONA 1 80% MAG ANG OHM/SEC		ZONA Z1+20(1- MAG A OHM/S	+12/11) ANG	ZON 120 MAG OHM/	% ANG	ZON/ ZL+ZLAM MAG OHM/S	IC(I2/I1) ANG	ZON ZL+0.8 MAG OHM/	ZEQT ANG	ZON 1.2(ZL+Z MAG OHM/	ZLAMI) ANG	ZON ZL+0.8 MAG OHM/	ZEQT ANG
Cariaco/Cumaná II	1.665	71.9	4.193	22.2	2.498	71.9	2.084	71.9	N/	4	5.161	71.7	N	Ą
Cumaná II/Cariaco	1.665	71.9	5.196	17.7	2.498	71.9	2.128	71.8	2.932	42.4	2.781	71.4	2.932	42.4
Carúpano/ Irapa	2.000	71.6	2.602	46.8	3.001	71.6	2.695	71.6	4.494	31.9	4.163	71.6	4.494	31.9

Irapa/Carúpano	2.000	71.6	NA		3.001	71.6	N.A	4	2.714	61.0	4.376	68.6	2.714	61.0
Casanay/Cariaco	0.378	67.3	2.750	7.3	0.567	67.3	1.304	70.3	3.245	7.7	5.562	71.4	3.245	7.7
Cariaco/Casanay	0.378	67.3	34.538	0.6	0.567	67.3	5.050	71.2	0.656	41.7	3.343	63.0	0.656	41.7
Casanay/Carúpano L1	0.925	62.1	2.538	18.8	1.388	62.1	1.652	65.0	1.479	43.7	4.376	68.6	1.479	43.7
Carúpano/Casanay L1	0.925	62.1	11.458	4.1	1.388	62.1	N.A	4	1.236	55.8	4.039	68.3	1.236	55.8
Casanay/Carúpano L2	0.825	71.6	2.256	20.3	1.238	71.6	1.5	71.6	1.298	48.9	4.239	71.6	1.298	48.9
Carúpano/Casanay L2	0.825	71.6	12.349	3.6	1.238	71.6	NA	4	1.090	63.9	3.901	71.6	1.090	63.9
Casanay/Chacopata	0.960	75.4	6.503	8.2	1.440	75.4	1.255	73.3	N/	4	1.785	66.7	N	4
Casanay/Cumaná II	1.775	71.6	4.083	24.4	2.663	71.6	2.222	71.6	N/	4	5.161	71.7	N/	4
Cumaná II /Casanay	1.775	71.6	6.523	15.0	2.663	71.6	2.721	70.8	2.272	67.9	4.039	68.3	2.272	67.9
Cumaná II/Bordones	0.229	70.5	3.465	3.6	0.343	70.5	0.960	71.5	2.228	6.9	4.384	71.8	2.228	6.9
Bordones/Cumaná II	0.229	70.5	8.023	1.5	0.343	70.5	0.290	70.5	N/	4	5.669	71.5	N/	4
Cumaná II/Manzanares	0.464	75.1	3.719	6.9	0.695	75.1	0.646	75.1	2.215	14.6	1.093	75.1	2.215	14.6
Manzanares/Cumaná II	0.464	75.1	25.829	1.0	0.695	75.1	N <i>A</i>	4	N/	4	6.021	72.0	N/	4
Cumaná II/3 Picos L1,2	0.005	70.5	2.293	0.1	0.007	70.5	0.007	70.5	0.983	0.3	0.013	70.5	0.983	0.3
3 Picos/Cumaná II L1	0.004	70.5	14.679	1.5	0.007	70.5	N <i>A</i>	4	N/	4	3.415	71.6	N/	4
3 Picos/Cumaná II L2	0.005	70.5	15.906	1.5	0.007	70.5	N <i>A</i>	4	N/	4	3.700	71.6	N/	4
Cumaná III/ Manzanare	0.132	75.1	2.334	3.1	0.199	75.1	0.223	75.1	1.052	8.7	0.546	75.1	1.052	8.7
Manzanares/Cumaná III	0.265	75.1	6.652	2.2	0.397	75.1	0.408	75.1	1.980	9.3	0.860	75.1	1.980	9.3
Cumaná II/Cumaná III	0.309	75.1	3.107	5.5	0.464	75.1	0.452	75.1	2.000	10.7	0.860	75.1	2.000	10.7
Cumaná III/Cumaná II	0.309	75.1	38.582	0.4	0.464	75.1	N <i>A</i>	4	N/	4	5.788	71.9	N/	4
Irapa/Guiria	0.517	71.6	1.050	27.8	0.775	71.6	N/	4	2.305	15.4	N/	4	2.305	15.4
Guiria/Irapa	0.517	71.6	NA		0.775	71.6	NA :		2.305	15.4	2.775	71.6	2.305	15.4

Tabla 5.35 Valores de ajuste propuesto completo de Bolívar

NOMBRE	ZON 80° MAG OHM/	% ANG	ZONA Z1+20(1- MAG A OHM/S	+I2/I1) ANG	ZON 120 MAG OHM/	% ANG	ZON ZL+ZLAI MAG OHM	MC(I2/I1)	ZON ZL+0.8 MAG OHM/	ZEQT ANG	ZON 1.2(ZL+2 MAG OHM/	ZLAMI) ANG	ZON ZL+0.8 MAG OHM/	ZEQT ANG
Bolívar/Farallones L1,2	8.01	76.3	19.462	23.6	12.02	76.3	12.019	76.28	10.91	63.0	24.034	76.28	10.91	63.0
Farallones/Bolívar L1,2	12.05	76.3	97.937	4.56	18.07	76.3	42.137	76.279	15.51	70.6	36.138	76.28	15.51	70.6

5.3.1.6 Valores seleccionados para las zonas propuestas

Tabla 5.36 Valores de ajuste para Monagas

RELES	uz	NOMBRE	Z1 MAG / OHM/S		Z2 MAG OHM/	ANG	Z3 MAG OHM/	ANG
R1	10.45	Boulevard/Quiriquire	4.445	9.7	1.255	75.1	2.669	20.5
R2	10.45	Quiriquire/Boulevard	6.173	6.9	1.159	75.1	1.876	75.1
R3	17.42	El Indio/Jusepín	3.822	11.0	1.158	70.2	2.561	70.2
R4	17.42	Jusepín/El Indio	5.278	7.9	1.463	70.7	1.011	63.9

R5	2.09	El Indio/La Paz L1	16.383	3.9	1.792	70.6	3.583	70.6
R6	2.09	La Paz/El Indio L1	96.011	0.7	1.792	70.6	2.043	43.6
R7	10.45	El Indio/La Paz L2	3.277	3.9	0.358	70.6	0.717	70.6
R8	17.42	La Paz/El Indio L2	11.519	0.7	0.215	70.6	0.245	43.6
R9	10.45	El Indio/Maturín L1	3.849	5.3	0.581	71.3	1.377	18.9
R10	8.71	Maturín/El Indio L1	14.724	1.7	3.940	70.4	0.675	52.2
R11	17.42	El Indio/Maturín L2	2.404	5.2	0.355	70.5	0.838	19.2
R12	8.71	Maturín/El Indio L2	14.518	1.7	3.970	71.4	0.701	51.7
R13	10.45	El Indio/Muscar	8.375	9.3	2.165	69.1	2.607	69.2
R14	8.71	Muscar/El Indio	10.011	9.3	3.018	69.8	2.260	63.5
R15	17.42	Maturín/Boulevard	1.542	10.4	0.475	75.1	1.077	18.8
R16	8.71	Boulevard/Maturín	33.972	0.9	5.338	72.1	1.716	23.8
R17	17.42	Maturín/Jusepín	4.484	11.3	1.403	70.2	2.561	70.2
R18	17.42	Jusepín/Maturín	4.434	11.5	1.403	70.2	1.548	45.3
R19	17.42	Maturín/Quiriquire	2.261	15.3	0.927	75.1	1.622	75.1
R20	10.45	Quiriquire/Maturín	15.170	3.8	4.445	72.6	1.938	39.9
R21	8.71	Santa Bárbara/Travieso	11.092	5.0	1.506	75.2	2.914	24.6
R22	8.71	Travieso/Santa Bárbara	3.945	14.2	2.797	73.2	4.219	16.7
R23	10.45	Tejero/Muscar	12.464	1.3	0.441	69.8	2.141	9.3
R24	10.45	Muscar/Tejero	2.841	5.6	0.453	69.7	0.951	69.4
R25	17.42	Temblador /Tucupita	4.908	28.9	5.448	68.2	3.600	55.4
R26	17.42	Tucupita/Temblador	6.317	22.0	3.966	63.7	4.305	43.5
R27	8.71	Travieso/Rebombeo I	3.943	22.7	2.723	76.2	3.960	28.7
R28	8.71	Rebombeo I/Travieso	15.605	5.6	2.349	76.2	3.381	34.2
R29	8.71	Travieso/Tejero	5.452	4.0	0.611	69.1	1.141	69.4
R30	8.71	Tejero/Travieso	5.882	3.7	0.796	71.3	2.555	10.7
R31-R32	17.42	Indio/Temblador L1,2	3.897	15.8	1.684	70.6	2.505	31.9
R33-R34	17.42	Temblador/ Indio L1,2	6.404	9.5	2.425	71.0	1.447	66.2

Tabla 5.37 Valores de ajuste para el sur de Anzoátegui

RELES	uz	NOMBRE	Z1 MAG A OHM/S	_	Z2 MAG / OHM/S	ANG	MAG	Z3 ANG I/SEC
R35	1.39	Anaco/El Roble	15.805	3.1	1.424	75.3	3.175	73.7
R36	1.39	El Roble/Anaco	312.235	0.2	48.967	72.8	3.424	18.4
R37	8.71	Anaco/El Tigre	12.159	18.7	5.228	68.5	5.228	68.5
R38	8.71	El Tigre/Anaco	11.169	20.4	5.295	66.7	5.295	66.7
R39	10.45	Anaco/El Tigre III	7.759	21.8	4.564	71.6	4.654	50.8
R40	10.45	El Tigre III/Anaco	9.739	17.2	3.947	66.1	3.947	66.1
R41	8.71	Anaco/Rebombeo II	6.608	22.9	4.617	76.2	4.838	41.6
R42	8.71	Rebombeo II /Anaco	12.916	11.5	3.449	68.5	3.449	68.5
R43	8.71	Tigre II/EI Esfuerzo	6.119	2.5	0.421	70.2	0.843	70.2
R44	8.71	El Esfuerzo/ Tigre II	5.385	2.8	0.467	70.2	1.078	17.8

R45	8.71	El Esfuerzo/El Tigre	30.675	0.5	2.237	70.2	0.532	38.4
R46	8.71	El Tigre/El Esfuerzo	3.205	4.7	0.421	70.2	0.843	70.2
R47	8.71	El Tigre/El Tigre II	3.711	5.4	0.561	70.2	1.153	22.4
R48	8.71	El Tigre II/El Tigre	22.087	1.1	5.859	70.2	0.634	44.0
R49	8.71	El Tigre/El Tigre III	2.834	9.3	1.519	71.6	2.348	14.2
R50	8.71	El Tigre III /El Tigre	32.835	0.8	1.103	71.0	0.755	49.6
R51	10.45	Tigre II/Santa Bárbara	8.408	30.2	6.690	71.6	7.184	47.4
R52	10.45	Santa Bárbara/Tigre II	10.987	22.7	5.858	64.5	5.858	64.5
R53	10.45	Rebombeo I/Rebombeo II	7.923	18.2	4.316	76.2	4.292	75.6
R54	10.45	Rebombeo II/Rebombeo I	5.542	26.6	3.827	76.2	4.502	43.5
R55	11.24	El Roble/Los Pilones	1.832	4.5	0.228	71.9	2.941	3.5
R56	11.24	Los Pilones/El Roble	0.152	71.9	0.228	71.9	0.393	73.715

Tabla 5.38 Valores de ajustes para el norte de Anzoátegui

RELES	uz	NOMBRE	Z′ MAG OHM/	ANG	_	2 ANG /SEC	Z3 MAG OHM/	ANG
R57	10.45	Barbacoa/Guaraguao	6.021	16.98	2.803	70.2	2.998	47.2
R58	10.45	Guaraguao/Barbacoa	11.348	8.91	3.843	72.41	2.376	67.7
R59	10.45	Barbacoa/Isleta	3.330	33.92	2.939	71.6	3.892	36.7
R60	10.45	Isleta/Barbacoa	64.651	1.65	63.99	75.63	2.487	69.1
R61	8.71	Barbacoa/Barcelona	5.705	6.44	0.993	75.1	1.441	33.7
R62	8.71	Barcelona/Barbacoa	12.560	2.92	3.585	75.64	0.872	66.5
R63	8.71	Barcelona/Cuartel	2.946	8.80	0.713	71.6	1.013	71.6
R64	8.71	Cuartel/Barcelona	23.972	1.08	15.81	75.24	1.302	25.6
R65	8.71	Barcelona/Parchita	4.478	3.28	0.44	75.49	1.050	75.6
R66	8.71	Parchita/Barcelona	7.163	2.05	0.575	73.77	1.116	16.7
R67	10.45	Barbacoa/Chuparín	5.333	8.79	1.286	71.9	1.956	71.9
R68	10.45	Chuparín/Barbacoa	9.595	4.87	1.881	73.58	1.112	66.4
R69	10.45	Chuparín/Guanta II L1	11.841	2.07	1.871	72.92	0.675	52.5
R70	2.09	Guanta II/Chuparín L1	22.369	5.49	3.397	73.16	8.622	18.1
R71	10.45	Chuparín/Guanta II L2	12.337	1.33	1.354	72.61	0.508	44.8
R72	2.09	Guanta II/Chuparín L2	17.983	4.56	2.765	72.40	8.143	12.7
R73	17.42	Chuparín/Paraíso	1.250	10.93	0.375	71.6	0.962	17.9
R74	17.42	Paraíso/Chuparín	0.25	71.6	0.375	71.6	1.029	16.7
R75	8.71	Cuartel/Lecherías	2.367	4.604	0.3	71.6	2.408	5.7
R76	8.71	Lecherías/Cuartel	0.20	71.6	0.3	71.6	1.293	74.3
R77	8.71	Guanta/Bordones	6.411	23.54	4.041	71.9	4.384	71.8
R78	8.71	Bordones/Guanta	14.234	10.36	3.597	62.9	3.597	62.9
R79	1.74	Guanta II/Cumana II	31.043	21.01	17.67	70.9	44.328	71.32
R80	8.71	Cumana II/Guanta II	14.445	8.86	4.739	71.62	3.053	65.6
R81	8.71	Guanta/Guanta II L1	10.371	2.11	1.088	72.67	0.656	46.7
R82	1.74	Guanta II/Guanta L1	28.344	3.87	3.546	71.96	4.429	32.7

R82	8.71	Guanta/Guanta II L2	10.260	3.33	1.697	72.77	0.915	54.5
R83	1.74	Guanta II/Guanta L2	34.911	4.91	5.328	72.70	5.571	42.1
R84	10.45	Guanta/Guaraguao	2.524	8.19	0.738	71.03	1.477	17.7
R85	10.45	Guaraguao/Guanta	18.723	1.10	0.808	71.36	0.794	34.5
R86	1.74	Guanta II/Barcelona	25.685	5.63	3.997	70.9	6.798	27.6
R87	8.71	Barcelona/Guanta II	9.751	2.96	1.188	71.74	0.815	50.6
R88	17.42	Isleta/Clarines	1.705	19.51	0.9	71.6	2.039	20.4
R89	17.42	Clarines/Isleta	7.975	4.10	1.044	71.59	1.793	23.4
R90	8.71	Parchita/Barbacoa	17.421	1.39	14.26	75.13	0.592	63.0
R91	1.04	Barbacoa/Parchita	32.310	6.28	5.470	75.8	8.79	75.65

Tabla 5.39 Valores de ajustes para Sucre

RELES	Uz	NOMBRE	Z1 MAG ANG OHM/SEC		Z2 MAG ANG OHM/SEC		Z3 MAG ANG OHM/SEC	
R92	17.42	Cariaco/Cumaná II	4.193	22.2	2.498	71.9	5.161	71.7
R93	17.42	Cumaná II/Cariaco	5.196	17.7	2.498	71.9	2.781	71.4
R94	17.42	Carúpano/ Irapa	2.602	46.8	3.001	71.6	4.163	71.6
R95	17.42	Irapa/Carúpano	2.000	71.6	3.001	71.6	2.714	61.0
R96	8.71	Casanay/Cariaco	2.750	7.3	1.304	70.3	3.245	7.7
R97	8.71	Cariaco/Casanay	34.538	0.6	5.050	71.2	0.656	41.7
R98	17.42	Casanay/Carúpano L1	2.538	18.8	1.652	65.0	1.479	43.7
R99	17.42	Carúpano/Casanay L1	11.458	4.1	1.236	55.8	1.236	55.8
R100	17.42	Casanay/Carúpano L2	2.256	20.3	1.5	71.6	1.298	48.9
R101	17.42	Carúpano/Casanay L2	12.349	3.6	1.090	63.9	1.090	63.9
R102- R103	10.45	Casanay/Chacopata	6.503	8.2	1.440	75.4	1.785	66.7
R104	17.42	Casanay/Cumaná II	4.083	24.4	2.663	71.6	5.161	71.7
R105	17.42	Cumaná II /Casanay	6.523	15.0	2.721	70.8	2.272	67.9
R106	8.71	Cumaná II/Bordones	3.465	3.6	0.960	71.5	2.228	6.9
R107	8.71	Bordones/Cumaná II	8.023	1.5	0.343	70.5	5.669	71.5
R108	8.71	Cumaná II/Manzanares	3.719	6.9	0.695	75.1	1.093	75.1
R109	8.71	Manzanares/Cumaná II	25.829	1.0	0.695	75.1	6.021	72.0
R110- R111	13.06	Cumaná II/3 Picos L1,2	2.293	0.1	0.007	70.5	0.013	70.5
R112	13.61	3 Picos/Cumaná II L1	14.679	1.5	0.007	70.5	3.415	71.6
R113	12.56	3 Picos/Cumaná II L2	15.906	1.5	0.007	70.5	3.700	71.6
R114	17.42	Cumaná III/ Manzanare	2.334	3.1	0.223	75.1	0.546	75.1
R115	8.71	Manzanare/Cumaná III	6.652	2.2	0.408	75.1	0.860	75.1
R116	8.71	Cumaná II/Cumaná III	3.107	5.5	0.464	75.1	0.860	75.1
R117	8.71	Cumaná III/Cumaná II	38.582	0.4	0.464	75.1	5.788	71.9
R118	26.136	Irapa/Guiria	1.050	27.8	0.775	71.6	2.305	15.4
R119	26.136	Guiria/Irapa	0.517	71.6	0.775	71.6	2.305	15.4

Z1 Z2 Z3 **RELES NOMBRE** MAG ANG MAG ANG MAG ANG uz OHM/SEC OHM/SEC OHM/SEC R120-19.462 23.57 10.91 10.91 63.0 2.09 Bolívar/Farallones 63.0 R121 R122-1.39 Farallones/Bolívar 97.937 4.558 42.137 76.28 15.51 70.6 R123

Tabla 5.40 Valores de ajustes para Bolívar

5.3.1.7 Calculo de las zonas con el nuevo criterio

Se tomara como ejemplo una línea cualquiera del sistema interconectado de CADAFE. Siendo esta la línea de Jusepín-Maturín.

$$Z_L = 20.372 \, \Box \, 70.22^{\circ} \, \Omega/prim.$$

$$RTP = \frac{115000}{110} = 1045.45 \qquad RTC = \frac{300}{5} = 60$$

$$U_Z = \frac{RTP}{RTC} = \frac{1045.45}{60} = 17.42$$

$$Z_L = \frac{20.372}{17.42} = 1.1694 \, \bot \, 70.22^{\circ} \, \Omega/\text{Sec.}$$

Para la primera zona se tomaron dos criterios:

El 80% de la línea a proteger.

$$Z_1 = 0.8^* Z_L = \frac{20.372}{17.42} = 0.93556 L 70.22^\circ \Omega/Sec.$$

 Este otro es tomando en cuenta el efecto de fuentes intermedias los cuales tienen que ver con las contribuciones de las corrientes de cortocircuito y la resistencia de falla en el punto de falla.

$$Z_1 = 0.8 * Z_L + R_F * \left(1 + \frac{I_2}{I_1}\right)$$

Donde:

11 = 0.826

12 = 2.073

 $R_F = 20 \Omega$.

$$Z_1 = 0.8*20.372 \bot 70.22^{\circ} + 20*\left(1 + \frac{2.073}{0.826}\right)$$

$$Z_1 = \frac{70.2466}{17.42} = 4.434 \bot 11.45^{\circ} \Omega/\text{Sec}$$

Para la segunda zona se utilizaron tres criterios:

El 120% de la línea a proteger.

$$Z_2$$
 = 1.2* Z_L = $\frac{24.446}{17.42}$ = 1.403 \perp 70.22° Ω/Sec.

 Este otro es tomando en cuenta el efecto de fuentes intermedias los cuales tienen que ver con las contribuciones de las corrientes de cortocircuito y además de la impedancia de línea adyacente mas corta en el punto de falla.

$$Z_2 = Z_L + 0.2 * Z_{LAMC} * \left(\frac{I_2}{I_1}\right)$$

Donde:

11 = 1.844

12 = 2.415

 $Z_{LAMC} = 4.900 \, \bot \, 71.59 \, ^{\circ} \, \Omega/Prim.$

$$Z_2 = 20.372 \, \Box \, 70.22^{\circ} + 0.2^{*} (4.900 \, \Box \, 71.59^{\circ}) * \left(\frac{2.415}{1.844}\right)$$

$$Z_2 = \frac{21.64965}{17.42} = 1.243 \bot 70.30 \,^{\circ} \,\Omega/\text{Sec}$$

 Es tomando en consideración los transformadores de potencia que se encuentran en la subestación remota.

$$Z_2 = Z_L + 0.8 * Z_{EQT}$$

En este caso la Z_{EQT} va hacer la impedancia de los transformadores de potencia que se encuentran en la subestación Maturín. Utilizando la formula

$$Z_{EQ}(\Omega) = \frac{X_{PU} * kV^2}{MVA}$$

En la S/E Maturín hay cuatro transformadores de 20MVA y de impedancias diferentes; se calcula cada una de las impedancias por separado.

$$Z_{EQ}(\Omega) = \frac{0.0945 * 115^2}{20} = 62.48$$

$$Z_{EQ}(\Omega) = \frac{0.107 * 115^2}{20} = 70.75$$

$$Z_{EQ}(\Omega) = \frac{0.0987 * 115^2}{20} = 65.26$$

$$Z_{EQ}(\Omega) = \frac{0.0726*115^2}{20}$$
 = 48.01

Luego se calcula el paralelo

$$Z_{\text{EQT}} = \frac{1}{\frac{1}{62.48} + \frac{1}{70.75} + \frac{1}{65.26} + \frac{1}{48.01}} = 15.08\Omega$$

Entonces el valor de zona 2 utilizando el criterio es

$$Z_2 = 20.372 \bot 70.22^{\circ} + 0.8*15.08$$

$$Z_2 = \frac{26.9661}{17.42} = 1.548 \perp 45.30^{\circ} \Omega/Sec$$

Para la tercera zona se utilizaron dos criterios el menor de ellos:

 La suma de la impedancia de línea a proteger con la impedancia de línea adyacente de mayor impedancia multiplicada por 120%.

$$Z_3 = 1.2*(Z_L + Z_{LAMI})$$

$$Z_3 = 1.2*(20.372 \bot 70.22^{\circ} + 13.457 \bot 75.22^{\circ})$$

$$Z_3 = \frac{40.5578}{17.42} = 2.3282 \bot 72.21^{\circ} \Omega/\text{Sec}$$

• Es tomando en consideración los transformadores de potencia que se encuentran en la subestación remota.

$$Z_3 = Z_L + 0.8 * Z_{EOT}$$

Este valor es el mismo del cálculo de zona dos siendo el resultado:

$$Z_3 = 20.372 \bot 70.22^{\circ} + 0.8*15.08$$

$$Z_3 = \frac{26.9661}{17.42} = 1.548 \perp 45.30^{\circ} \Omega/\text{Sec}$$

Todos estos valores que se calcularon son para el relé que ve hacia la subestación Maturín el cual llamaremos R22; los cálculos para el relé R21 que está colocado al otro extremo de la línea pero mirando hacia la subestación Jusepín son los mismos.

Βοι

5.3.1.8 Caso de estudio

Para el caso de estudio se produjo una falla en la línea el Indio-Muscar y los pares de relés involucrados en la falla son: Indio-Muscar, Indio-Jusepín, Maturín-Jusepín. Con esto se verá el comportamiento de las protecciones asociadas a las mismas, en la figura 5.4 se presenta el diagrama unifilar del caso en estudio y en la figura 5.5 la respuesta de la protecciones ante la falla vistas en el diagrama de distancia tiempo

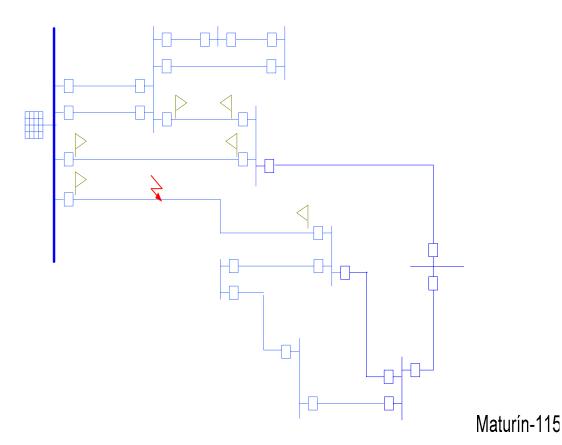


Figura 5.4 Caso de estudio

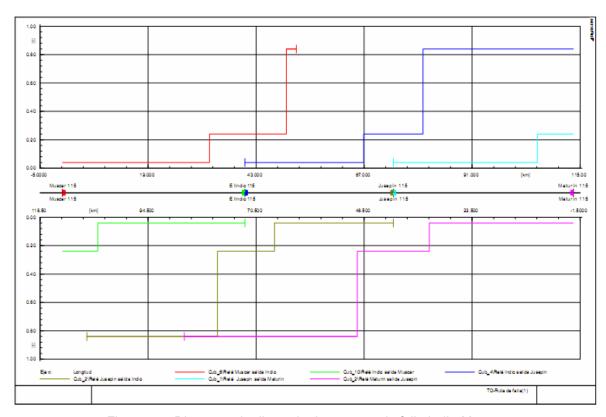


Figura 5.5 Diagrama de distancia-tiempo para la falla Indio-Muscar

5.4 PROPUESTA

De acuerdo con los resultados del estudio desarrollado se sugiere incluir en las protecciones de distancia del sistema de transmisión de CADAFE los valores calculados con el nuevo criterio, ya que con estos se mejora la selectividad de las zonas.

CONCLUSIONES

Utilizando el nuevo criterio, el cual incluye las contribuciones de corrientes, producto de fuentes intermedias, se minimizan los disparos erráticos de los relés, en primera y segunda zona, dado que de acuerdo con las simulaciones ejecutadas se ocasionaban subalcance en la respuesta de la protección ante las fallas.

Para la zona dos, también es importante tener en cuenta que si el cálculo con las contribuciones de las corrientes, producto de fuentes intermedias es menor al 120% de la impedancia de línea a proteger, se toma este último cálculo para el ajuste; siempre y cuando no solape las protecciones propias de los transformadores que se encuentran en la subestación remota.

Se considera indispensable limitar el alcance de la tercera zona hacia adelante aplicando este criterio, ya que en principio si la falla ocurre en un nivel de tensión menor o mayor a 115kV, se espera que actúen las protecciones propias de los transformadores, quedando la tercera zona como una protección de respaldo para los mismos.

En el estudio realizado se observó que existen varias líneas en el sistema de transmisión de CADAFE que por su clasificación, entran en la categoría de líneas cortas, según la norma C37.113. Dado que la diferencia en los aportes de corriente para fallas cercanas al relé o en el terminal remoto es muy pequeña, dificultan al relé la lectura de la variación de la impedancia con precisión, no es recomendable, utilizar esquemas de distancia, sino otros de actuación más segura y rápida.

Para la protección de líneas con longitud media y larga, se puede utilizar sin problema la protección de distancia, dado que la discriminación del relé es más efectiva en líneas con SIR menor que cuatro (4).

Las líneas largas, conectadas entre sistemas débiles o siendo ellas mismas, débiles en comparación con los sistemas que las unen, generalmente requieren disparos de alta velocidad para evitar problemas de estabilidad en el sistema.

RECOMENDACIONES

Por las innumerables bondades que presenta esta herramienta computacional DIgSILENT PowerFactory para el análisis de los sistemas de potencia y en particular para el estudio de las protecciones de distancia se debería impulsar la utilización de la misma, en el departamento de mediciones y protecciones de la empresa CADAFE ya que facilita la comprensión y análisis de fallas.

Además de las protecciones de distancia, se puede incluir para futuros análisis, la lógica de protección de alta impedancia para aumentar la selectividad ante una falla en la línea, producto de corrientes muy pequeñas.

Para protección de líneas cortas se recomienda el uso de esquemas de protecciones completamente selectivos como hilo piloto, corriente diferencial o comparación de fases; adicionalmente, no se recomienda el uso de protección de distancia como protección principal, dado que factores tales como la resistencia de arco o la impedancia de falla puede causar subalcance en el relé.

A nivel académico se debería incluir esta herramienta, en su versión estudiantil para que el estudiante pueda aumentar sus conocimientos en el área de potencia en general, específicamente en el área de las protecciones.

BIBLIOGRAFIA

- [1] Navarro, J; Montañés, A y Santillán, A. Instalaciones eléctricas de alta tensión, sistema de maniobra, medida y protección. España. Paraninfo. (1999).
- [2] Ceballos, Luis. Curso de sistema de potencia para operadores y despachadores. Puerto la Cruz. (1987).
- [3] Oropeza, Fernando. **Curso de protecciones eléctrica**. Puerto la Cruz. (2005).
- [4] HARPER, Enríquez. **Elemento de diseño de subestaciones eléctricas**. Editorial Limusa 2ª edición cuarta reimpresión. México DF. (2002).
- [5] Interconexión Eléctrica S.A. E.S.P; Guía para el buen ajuste y la coordinación de protecciones del STN Julio (2000).
- [6] Báez G, Yoxianny. Coordinación de Protecciones diferenciales, de distancia y direccional en la red de subtransmisión 69kV del distrito gas Anaco. PDVSA. Puerto la Cruz. (2006).
- [7] DIgSILENT GMBH; **Manual de Disilent PowerFactory** versión 13.2 (2004).
- [8] Mason Russell, C. the art & science, of protective relaying. C.E.C.S.A. (1971).
- [9] Alvarez, A. Calcular los ajustes y coordinación de las protecciones del sistema regional actual C.V.G EDELCA a 115kV. Puerto Ordaz. (1980).
- [10] Naal M, Edgardo R. Análisis de los criterios de ajuste y coordinación del sistema de protección de la S/E Jose 400/115/34.5kV. Puerto la Cruz. (2005).

- [11] Marcano M, Luis E. Coordinación del sistema de protecciones del sistema eléctrico de la S/E Tucupita empleando la herramienta computacional Digsilent powerfactory. Puerto la Cruz. (2008).
- [12] Empresa CADAFE. Diseños de normas de sub-estaciones, sistema de protección D.N.S-3. Caracas 1980.
- [13] López, Leonardo. Protección de sistema de potencia. Puerto la Cruz 2005
- [14] HARPER, Enríquez. Fundamentos de Protección de Sistemas Eléctricos por Relevadores. Editorial Limusa 2ª edición cuarta reimpresión. México DF. (2002).
- [15] IEEE. Power System Relaying Committe (PSRC) of the Power Engineering Society. Guide for protective Relay Applications to Transmission Lines. Std. C37.113. 1998.
- [16] IEEE. Industrial and Commercial Power Systems Committee of the Industry Applications Society. Recommended Practice for Protection and Coordination of Industrial and Commercial Power System. Std. 242. 1986.

TÍTULO	"Estudio y coordinación de las protecciones de distancia de la red 115kV asociadas a las subestaciones pertenecientes a CADAFE en el sistema troncal de transmisión."
SUBTÍTULO	

AUTOR (ES):

APELLIDOS Y NOMBRES	CÓDIGO CULAC / E MAIL
AMUNDARAY CRUZ FREDS ARGILIO	CVLAC: 13.670.225
AMONDARAT CRUZ FREDS ARGILIO	E MAIL: Freds_Amundaray@Hotmail.com
	CVLAC:
	E MAIL:
	CVLAC:
	E MAIL:
	CVLAC:
	E MAIL:

PALÁBRAS O FRASES CLAVES:

ÀREA	SUBÀREA
Ingeniería y ciencias aplicadas	Ingeniería Eléctrica

RESUMEN (ABSTRACT):

El estudio desarrollado en este trabajo permitió realizar la Coordinación de Protecciones de distancia de las Líneas de 115kV del sistema de transmisión de CADAFE a nivel oriental. Para lograr el objetivo principal se depuro el mencionado sistema y se colocaron líneas y subestaciones nuevas que modificaban la topología de la red existente. También se realizó un levantamiento de la información referente a las protecciones de distancia existentes y sus ajustes actuales. Se realizo el cálculo de Cortocircuito del Sistema, utilizando el simulador DIgSILENT Powerfactory, para conocer los niveles de cortocircuito de la Red y las corrientes que contribuían a la falla producto de las fuentes intermedias, los cuales nos permitieron considerar las situaciones más adversas en cuanto a requerimientos de protección de líneas para realizar el ajuste a las protecciones de distancia, todo esto tomando como base las Normas IEEE C37.113, IEEE 242.

CONTRIBUIDORES:

APELLIDOS Y NOMBRES	ROL / CÓDIGO CVLAC / E_MAIL					
	ROL	CA	AS	TU	JU	
Hernán Parra	CVLAC:	4.362.	4.362.464			
Heman Fana	E_MAIL	hparra	hparra@anz.udo.edu.ve			
	E_MAIL					
	ROL	CA	AS	TU	JU	
Merly Camino	CVLAC:	11.383	11.383.372			
Merry Carrillo	E_MAIL	mcam	mcamino@cadafe.com.ve			
	E_MAIL					
	ROL	CA	AS	TU	JU	
Santiago Escalante	CVLAC:	5.790.273				
Santiago Escalante	E_MAIL	Esantiago@anz.udo.edu.ve				
	E_MAIL					
	ROL	CA	AS	TU	JU	
Luís Suárez	CVLAC:	11.644	11.644.024			
Luis Suai 62	E_MAIL	lsuarez@anz.udo.edu.ve				
	E_MAIL					

FECHA DE DISCUSIÓN Y APROBACIÓN:

2009	08	06
AÑO	MES	DIA

LENGUAJE. <u>SPA</u>

ARCHIVO (S):

ALCANCE

NOMBRE DE ARCHIVO	TIPO MIME
Tesis.doc	application/msword

CARACTERES EN LOS NOMBRES DE LOS ARCHIVOS: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z. a b c d e f g h i j k l m n o p q r s t u v w x y z. 0 1 2 3 4 5 6 7 8 9.

ESPACIAL: VENEZUELA (OPCIONAL) TEMPORAL: UNIVERSAL (OPCIONAL) TÍTULO O GRADO ASOCIADO CON EL TRABAJO: Ingeniero Electricista NIVEL ASOCIADO CON EL TRABAJO: Ingeniería Eléctrica ÁREA DE ESTUDIO: Departamento de Electricidad INSTITUCIÓN: Universidad de Oriente

DERECHOS

"Los Trabajos de Grado son propiedad de la Universidad de Oriente y						
solo podrán ser utilizados para otros fines con el consentimiento del consejo						
de Núcleo respectivo el cua	ıl participará al consejo L	Iniversitario"				
	Freds Amundaray					
	AUTOR					
Prof. Hernán Parra	Prof. Luis Suarez	Prof. Santiago Escalante				
TUTOR	JURADO	JURADO				
	Verena Mercado					

POR LA SUBCOMISION DE TESIS