UNIVERSIDAD DE ORIENTE NÚCLEO BOLÍVAR ESCUELA DE CIENCIAS DE LA TIERRA DEPARTAMENTO DE GEOLOGÍA DEPARTAMENTO DE GEOTECNIA

CARACTERIZACIÓN GEOLÓGICA - GEOQUÍMICA PARA DETERMINAR ANOMALÍAS AURÍFERAS ASOCIADAS AL Cu, Fe, Zn Y Pb EN LA ZONA I DE LA CONCESIÓN MINERA CHOCÓ 3, PERTENECIENTE A C.V.G MINERVEN. MUNICIPIO AUTÓNOMO EL CALLAO, ESTADO BOLÍVAR.

TRABAJO FINAL DE GRADO PRESENTADO POR LAS BACHILLERES: LOPEZ R. KRYSTEL M. Y BLANCO H. FERMALIA A. PARA OPTAR A LOS TÍTULOS DE GEÓLOGO E INGENIERO GEÓLOGO RESPECTIVAMENTE

CIUDAD BOLÍVAR, DICIEMBRE DE 2010

HOJA DE APROBACIÓN

Este trabajo de grado, intitulado, "Caracterización Geológica-Geoquímica para determinar anomalías auríferas asociadas al Cu, Fe, Zn y Pb en la zona I de la concesión minera Chocó 3, perteneciente a C.V.G Minerven. Municipio Autónomo El Callao, Estado Bolívar", presentado por las bachilleres Krystel M., López R. y Fermalia A., Blanco H., ha sido aprobado de acuerdo a los reglamentos de la Universidad de Oriente, por el jurado integrado por los profesores:

Nombres:	Firmas:
Profesor Edixon Ramón Salazar	
(Asesor Académico)	
Profesor Lino Castillo	
(Jurado)	
Profesor Enrique Acosta	
(Jurado)	
Profesora Rosario Rivadulla	Profesor Enrique Acosta
lefa del Departamento de Geología	Jefe del Departamento de Geotecnia

Ciudad Bolívar, 13 de Diciembre 2010

DEDICATORIA

Este Trabajo de Grado es una parte de mi vida y comienzo de otras etapas, por esto y más se lo dedico a mis padres, por la aceptación incondicional y respetar mi persona. Por confiar en mi sentido común, por entender mi carácter y enseñarme a moldearlo, por instruir mi lógica respetando mis propósitos y atribuciones, por darle siempre un lugar importante a las cosas que quiero, a ellos les debo todo lo que soy.

A Fermalia Blanco, por su constante apoyo, compañía y paciencia, además de sus críticas, correcciones y ayuda en la redacción de este trabajo. Gracias por enseñarme que todo se aprende y que todo esfuerzo es al final recompensa, sin tu ayuda hubiese sido difícil lograrlo.

A mis amigos y compañeros con los que compartí tantas aventuras, experiencias y desveladas en especial Ramses Alejos y Marielis Naranjo que me acompañaron y ayudaron incondicionalmente durante la carrera.

A la familia Belisario, por tener un corazón tan grande y tan limpio, capaz de brindar cariño a todos aquellos que les rodean. Su entendimiento y apego para conmigo es de incalculable valor. Los ADORO.

Krystel M. López R.

DEDICATORIA

A mis padres, por su comprensión y ayuda en momentos malos y menos malos. Me han enseñado a encarar las adversidades sin perder nunca la dignidad ni desfallecer en el intento. Me han dado todo lo que soy como persona, mis valores, mis principios, mi perseverancia y mi empeño, y todo con una gran dosis de amor y sin pedir nunca nada a cambio. Gracias por darme la estabilidad emocional y económica; para poder alcanzar este logro, que definitivamente no hubiese podido ser realidad sin ustedes.

A mis hermanos Andrés Eloy y José Ferman, porque a pesar de la distancia, el ánimo, apoyo, y alegría que me brindan me dan la fortaleza necesaria para seguir adelante.

A Krystel López, por ser la persona que me ha acompañado en la parte más importante de mi carrera, brindándome su constante apoyo tanto en los malos como los buenos momentos, siempre presente cuando más lo necesité y demostrándome que con empeño, esfuerzo y dedicación todo se puede, para muestra este trabajo.

A mi segunda familia, Señor Ismael López y Señora Gilda de López, personas que desde que me conocieron me brindaron y me brindan todo el apoyo y cariño, son la personas por las cuales hoy por hoy puedo afirmar que, a pesar de haber venido sola a continuar mis estudios, jamás me he sentido así, porque ellos han estado a mi lado.

Fermalia A. Blanco H.

AGRADECIMIENTOS

A la Casa más Alta, Universidad de Oriente, por permitirme crecer en todos los aspectos de mi persona, por ofrecerme todas las actividades que contribuyeron a mi educación y porque aquí he vivido la mejor etapa de mi vida.

A mi asesor académico profesor Edixon Ramón Salazar, por su disposición permanente e incondicional en aclarar mis dudas y por sus importantes sugerencias durante la redacción del Trabajo de Grado.

A mi asesor industrial Ingeniero Marcos Monroy, por sus ideas, recomendaciones, valiosa colaboración y buena voluntad en las actividades de campo, así como en sus observaciones y críticas en la redacción de este trabajo.

A la Geóloga Ylaine Rodríguez, por su gran ayuda cuando me enfrentaba con ciertos problemas.

A María Fernanda Dasilva por su amistad, su contribución, ayuda profesional incondicional y valiosos consejos.

Krystel M. López R.

AGRADECIMIENTOS

A Dios por ser mi Fortaleza, darme todo lo que tengo y no dejarme caer nunca.

A la Escuela de Ciencias de la Tierra de la Universidad de Oriente y todo el personal que allí labora, por brindarme la oportunidad de instruirme para mi desarrollo personal y profesional.

A mi asesor académico profesor Edixon Ramón Salazar, por asesorarme y acompañarme en este camino que hoy culmina con este Trabajo de Grado. A mi asesor industrial Ingeniero Marcos Monroy, por sus valiosas sugerencias, su permanente disposición, y acertados aportes durante el desarrollo de este trabajo.

A la familia Belisario, personas que sin conocerme suficiente confiaron en mí dándome su constante apoyo, cariño y ayuda incondicional en estos últimos años de mi carrera que fueron tan importantes en mi vida y todo esto sin poner nunca peros o darme negativas, sino todo lo contrario.

A mis compañeros de estudio y amigos Aurelis, Vanessa, Katy, Josmy, Russo, Ruben, Antonio y Euclides que me acompañaron y que con su ayuda logré alcanzar una de mis mayores metas durante esta etapa de formación en mi vida.

Fermalia A. Blanco H.

RESUMEN

El área de estudio se localiza en el Municipio Autónomo El Callao del estado Bolívar, Venezuela, aproximadamente a cinco (5) kilómetros al Oeste de la población de El Callao. Desde este pueblo por la vía asfaltada se comunica con el caserío El Chocó. El proyecto consistió en realizar una Caracterización Geológica-Geoquímica en la zona I de la concesión minera Chocó 3, perteneciente a la Corporación Venezolana de Guayana (C.V.G Minerven C.A), a fin de determinar anomalías auríferas y guías de mineralización, que sirvan para planificar, programar y ejecutar sondeos cortos, para la evaluación de Reservas Geológicas. El plan de actividades radicó primero en hacer un reconocimiento de la zona, luego en llevar a cabo un muestreo geoquímico sobre una red de picas levantadas topográficamente con una línea base (EJE CENTRAL) con dirección NE-SO de 900 metros de largo y 10 picas transversales con dirección NO-SE; el largo de cada transversal es de 600 metros en ambos sentidos, espaciadas entre ellas cada 100 metros, para un total de 108 hectáreas; las dimensiones de cada calicata aproximadamente es de 25 cm de diámetro por 50 cm de profundidad separadas una de la otra 25 metros, en las que se recolectaron un total de 490 muestras de suelos para ser analizadas en el laboratorio industrial de la compañía C.V.G MINERVEN por el método de Absorción Atómica. Los resultados se expresan en ppb para los elementos Oro (Au), Cobre (Cu), Zinc (Zn), Plomo (Pb), y en ppm para el elemento Hierro (Fe), se seleccionaron estos elementos por su asociación geoquímica con este tipo de mineralización. Una vez obtenidos los resultados de laboratorio de los análisis de los suelos se llevó a cabo la elaboración de los diferentes mapas geoquímicos con la ayuda del programa Surfer 8 y gráficas geoestadísticas utilizando el programa SPSS versión 15, para correlacionar los resultados de oro (Au) con los valores de Cu, Fe, Zn y Pb respectivamente. En el mapa geoquímico se pueden considerar dos zonas anómalas ya que contienen valores considerables de Oro entre 4 y 11 gramos por tonelada (g/t) ó 4000.00 - 11000.00 partes por billón (ppb), dichas anomalías fueron enumeradas como A I y A II siendo la anomalía A I, la que presenta mayor respuesta anómala abarcando un área de 20 hectáreas aproximadamente con tendencia estructural NO-SE. Considerando los altos valores obtenidos es posible que las anomalías geoquímicas encontradas en la zona de prospección estén reflejando en superficie una posible mineralización a profundidad. Por otra parte, al igual que los mapas geoquímicos también fue posible interpretar los mapas topográfico y geológico del área de estudio, donde se pueden observar que la zona está dominada por un sistema de fallas de tipo "shear zone" (zona de cizalla) con dirección NE-SO.

CONTENIDO

HOJA DE APROBACIÓNii
DEDICATORIAiii
DEDICATORIAiv
AGRADECIMIENTOSv
AGRADECIMIENTOSvi
RESUMEN vii
CONTENIDOviii
LISTA DE FIGURASxiii
LISTA DE TABLASxiv
INTRODUCCIÓN1
CAPÍTULO I3
SITUACIÓN A INVESTIGAR
1.1 Planteamiento del problema
1.2 Objetivos de la investigación 4
1.2.1 Objetivo general 4
1.2.2 Objetivos específicos
1.3 Justificación de la investigación
1.4 Alcances de la investigación5
1.5 Limitaciones de la investigación5
CAPÍTULO II

GENERALIDADES	6
2.1 Ubicación geográfica del área de estudio	6
2.2 Acceso al área	6
2.3 Características físicas naturales del área de estudio	8
2.3.1 Clima	8
2.3.2 Topografía	8
2.3.3 Geomorfología	9
2.3.4 Drenaje	9
2.3.5 Suelos	10
2.3.6 Vegetación	10
2.4 Geología regional	10
2.4.1 Provincia Geológica de Imataca (PI)	12
2.4.2 Provincia Geológica de Pastora (PP)	12
2.4.3 Provincia Geológica de Cuchivero-Amazonas (PCA)	16
2.4.4 Provincia Geológica de Roraima (PR)	17
2.5 Geología local	17
2.5.1 Provincia Geológica de Pastora	17
2.6 Geología de Chocó 3 zona I	21
CAPÍTULO III	22
MARCO TEÓRICO	22
3.1 Antecedentes de la investigación	22
3.2 Bases teóricas	23
3.2.1 Geoquímica	23

	3.2.2 Prospección geoquímica	. 24
	3.2.3 Anomalía geoquímica	. 24
	3.2.4 Anomalías en suelos residuales	. 25
	3.2.5 Anomalías en agua	. 25
	3.2.6 Anomalías en sedimentos	. 25
	3.2.7 Estadística	. 26
	3.2.8 Geoestadística	. 26
	3.2.9 Valor normal de fondo	. 26
	3.2.10 Valor umbral	. 27
	3.2.11 Diagrama de caja	. 27
	3.2.12 Diagrama de dispersión	. 28
	3.2.13 Mapa	. 29
	3.2.14 Mapa geológico	. 29
	3.2.15 Elementos de un mapa	. 29
	3.2.16 Elementos de un mapa geológico	. 29
	3.2.17 Mapa topográfico	. 30
	3.2.18 Mapa geoquímico	. 30
3	.3 Términos básicos	. 30
	3.3.1 Oro	. 30
	3.3.2 Plomo	. 31
	3.3.3 Zinc	. 31
	3.3.4 Hierro	. 31
	2.2.5.Cohra	21

3.3.6 Cuarzo	
3.3.7 Roca meteorizada (RM)	
3.3.8 Roca fresca (RF)	
3.3.9 Trincheras	33
3.3.10 Sondeos exploratorios	
CAPÍTULO IV	34
METODOLOGÍA DE TRABAJO	34
4.1 Nivel de investigación	34
4.2 Diseño de investigación	34
4.3 Actividades realizadas	35
4.4 Flujograma de la metodología	
4.4.1 Recopilación cartográfica y b	ibliográfica 37
4.4.2 Trabajo de campo	37
4.4.3 Trabajo de laboratorio	39
4.4.4 Trabajo de oficina	45
CAPÍTULO V	47
ANÁLISIS E INTERPRETACIÓN	DE LOS RESULTADOS47
5.1 Muestreo de la zona de estudio	47
5.2 Mapa geológico	
5.3 Estudios geoquímicos	
5.4 Resultados de análisis estadístico	49
5.4.1 Elemento Oro	49
E 12 Flomente Cohre	50

į	5.4.3 Elemento Hierro	52
į	5.4.4 Elemento Zinc	53
Ţ	5.4.5 Elemento Plomo	54
5.5	S Correlación e interpretación geoquímica entre elementos	56
CON	ICLUSIONES Y RECOMENDACIONES	58
Coi	nclusiones	58
Red	comendaciones	59
REFI	ERENCIAS	60
APÉ	NDICES	62
API	ENDICE A	62
	Resultados de los análisis químicos realizados a las muestras de suelo recolectadas e la zona I de Chocó 3	
API	ÉNDICE B	103
F	Resultados de la prospección geoquímica	103
API	ÉNDICE C	110
ŗ	Resultados de los análisis estadísticos	110

LISTA DE FIGURAS

Figura 2.1 Ubicación y vías de acceso a la población de El Callao de Chocó 3 zona I.
Figura 2.2 Provincias Geológicas del Escudo de Guayana (Mendoza, V. 2005) 11
Figura 2.3 Cinturones de Rocas Verdes del Escudo de Guayana. (Mendoza, V. 2000).
Figura 2.4 División litoestratigráfica de la Provincia Geológica de Pastora. (Menéndez, A. 1994 en Mendoza, V. 2005)
Figura 4.1 Flujograma de la metodología
Figura 4.2 Homogenización, cuarteo, codificación y envase de las muestras38
Figura 4.3 Muestras previamente identificadas en bandejas de aluminio
Figura 4.4 Muestras pulverizadas
Figura 4.5 Muestras introducidas en el carrusel
Figura 4.6 Equipo de digestión
Figura 4.7 A) Soluciones contenidas en los balones. B) Equipo de Espectrometría de Absorción Atómica
Figura 5.1 Diagrama de caja para representar las muestras del Au con valores por encima del valor umbral
Figura 5.2 Diagrama de caja para representar las muestras del Cu con valores por encima del valor umbral
Figura 5.3 Diagrama de caja para representar las muestras del Fe con valores por encima del valor umbral
Figura 5.4 Diagrama de caja para representar las muestras del Zn con valores por encima del valor umbral
Figura 5.5 Diagrama de caja para representar las muestras del Pb con valores por encima del valor umbral

LISTA DE TABLAS

Tabla 2.1 Coordenadas UTM del área de estudio.	6
Tabla 5.1 Estadísticos descriptivos para el elemento Au en ppb.	49
Tabla 5.2 Estadísticos descriptivos para el elemento Cu en ppb.	51
Tabla 5.3 Estadísticos descriptivos para el elemento Fe en ppm	52
Tabla 5.4 Estadísticos descriptivos para el elemento Zn en ppb	53
Tabla 5.5 Estadísticos descriptivos para el elemento Pb en ppb	55

INTRODUCCIÓN

La Compañía Minera C.V.G. Minerven C.A., perteneciente al Holding de la Corporación Venezolana de Guayana (C.V.G.), fue creada para desarrollar la industria del oro, realizando labores de exploración, prospección, evaluación, explotación, procesamiento y comercialización del mineral a nivel nacional.

Ésta empresa se encuentra ubicada en la región de El Callao, en el estado Bolívar, tiene en su haber 12 concesiones de 500 hectáreas cada una, las cuales fueron otorgadas por el Estado Venezolano el 9 de enero de 1973 por medio del Ministerio de Minas e Hidrocarburos (M.M.H.).

El área de estudio se encuentra ubicada dentro de la concesión minera Chocó 3 específicamente la zona I, localizada en el Municipio El Callao del estado Bolívar, aproximadamente a cinco (05) kilómetros al Oeste de la población de El Callao y el acceso a la zona es por una vía asfaltada que comunica con el caserío El Chocó.

El presente trabajo se realizó con la finalidad de detectar anomalías geoquímicas de la zona estudiada de Chocó 3. El mismo podría actuar como un aporte a la exploración, ya que los análisis de muestreo permitirán tomar decisiones en cuanto a un mallado más reducido, trincheras y sondeos exploratorios.

El estudio exploratorio está estructurado en 5 capítulos. En el capítulo I se presenta la situación a investigar, abarca los objetivos, justificación y limitaciones de la investigación. El capítulo II corresponde a las generalidades, ubicación del área, marco geológico regional y local enmarcado en el municipio El Callao del Estado Bolívar específicamente en la zona I de Chocó 3. En el capítulo III se exponen los fundamentos teóricos que sustentan la investigación. La metodología empleada para

el desarrollo de la investigación se muestra en el capítulo IV. El capítulo V se destinó al análisis e interpretación de los resultados obtenidos en cada una de las etapas de la metodología aplicada. Posteriormente se presentan las conclusiones y recomendaciones generadas del análisis de los resultados como consecuencia final del estudio. Por último se exponen las referencias, apéndices y anexos.

CAPÍTULO I SITUACIÓN A INVESTIGAR

1.1 Planteamiento del problema

La Corporación Venezolana de Guayana (C.V.G. MINERVEN, C.A.) es una de las empresas más importantes para el desarrollo socioeconómico del país dedicada a la producción y comercialización de oro eficientemente.

La extracción del mineral de oro en esta compañía amerita de un conjunto de actividades como son la exploración, interpretación y planificación. Es por ello que C.V.G MINERVEN le ha otorgado a la División de Geología de Exploración la realización de nuevos proyectos exploratorios incluyendo el proyecto de la concesión minera Chocó 3 zona I, con el fin de realizar la búsqueda de nuevos yacimientos aplicando los estudios Geológicos y Geoquímicos, los cuales van a permitir definir las zonas de anomalías asociadas al oro y así ubicar las áreas de interés en superficie.

El estudio se llevó a cabo sobre una red de picas levantadas topográficamente con una línea base (EJE CENTRAL) con dirección NE-SO de 900 metros de largo y 10 líneas transversales (PICAS) con dirección NO-SE; cada pica transversal tiene 600 metros en ambos sentidos, espaciadas entre ellas cada 100 metros, para cubrir un área total de 108 hectáreas.

1.2 Objetivos de la investigación

1.2.1 Objetivo general

Caracterizar a través de estudios geológicos y geoquímicos la zona I de la concesión minera Chocó 3, perteneciente a C.V.G MINERVEN C.A., ubicada en el Municipio Autónomo El Callao, estado Bolívar.

1.2.2 Objetivos específicos

Realizar análisis estadístico de las muestras con material aurífero para conocer la distribución del mineral así como su representación gráfica.

Localizar anomalías geoquímicas para determinar valores anómalos de oro.

Determinar la relación existente entre la topografía y la mineralización aurífera presente en la zona.

Interpretar los mapas obtenidos, con el fin de determinar la asociación geoquímica del oro con los elementos trazas o exploradores (Cu, Fe, Zn y Pb).

1.3 Justificación de la investigación

La concesión minera Chocó 3 fue estudiada anteriormente por C.V.G. TECMIN C.A. en 1993, donde se obtuvieron resultados favorables para la empresa C.V.G. MINERVEN C.A., es por ello que surge este proyecto de caracterizar a través de estudios geológicos y geoquímicos, la zona I de Chocó 3 con la finalidad de localizar guías de mineralización aurífera que permitan proponer la ubicación de futuros

sondeos exploratorios teniendo como objetivo ubicar sitios de explotación del mineral.

1.4 Alcances de la investigación

Con la ejecución de este proyecto exploratorio se podrá determinar zonas anómalas, mediante un muestreo geoquímico en la zona I de Chocó 3, utilizando un sistema de mallado exploratorio de 100 x 25 metros que permita elaborar, analizar y digitalizar mapas geoquímicos, geológicos y topográficos, para así delimitar el área y ubicar futuros sondeos exploratorios.

1.5 Limitaciones de la investigación

En la ejecución de este proyecto, se encuentran restricciones que impiden el normal desarrollo del trabajo exploratorio, en las cuales podemos citar las siguientes:

Limitada información bibliográfica sobre la concesión Chocó 3, debido a que presenta escasos estudios exploratorios.

Inaccesibilidad a la zona de estudio debido a la densa vegetación del sector.

Poca disponibilidad de personal, equipos y/o herramientas para realizar el procedimiento de muestreo.

CAPÍTULO II GENERALIDADES

2.1 Ubicación geográfica del área de estudio

La zona I de la concesión minera Chocó 3, propiedad de C.V.G Minerven se encuentra localizada en el Municipio Autónomo El Callao del estado Bolívar, aproximadamente a cinco (05) kilómetros al Oeste de la población El Callao, se accede por una vía asfaltada que comunica con el caserío El Chocó. El área de estudio se encuentra localizada dentro de las siguientes coordenadas. (Tabla 2.1).

Tabla 2.1 Coordenadas UTM del área de estudio.

COORDENADAS UTM		
ESTE	NORTE	
624766.08	812001.18	
626051.15	810468.53	
624059.51	808797.21	
622773.85	810329.23	

2.2 Acceso al área

La concesión Chocó 3 tiene fácil acceso por el lado Sur a través de la carretera El Callao - El Manteco y por el lado Este a través de la carretera El Callao - La Ramona, internamente la cruza el camino carretero de San Juan del Cubaral (figura 2.1)

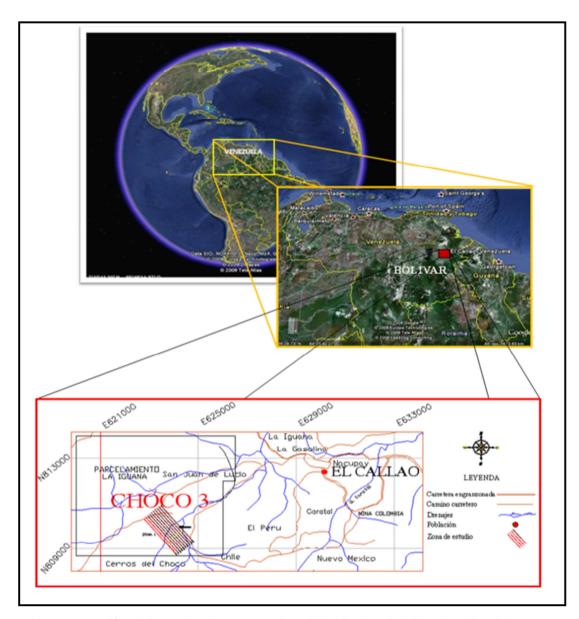


Figura 2.1 Ubicación y vías de acceso a la población de El Callao de Chocó 3 zona I.

8

2.3 Características físicas naturales del área de estudio

2.3.1 Clima

A partir de los estudios realizados por C.V.G. TECMIN (1989) en el Proyecto

de Inventario de los Recursos Naturales de la Región Guayana, utilizando los datos

suministrados por la estación meteorológica Puente Blanco perteneciente al

Ministerio del Ambiente, ubicado según las siguientes coordenadas geográficas:

Latitud Norte 7° 22' 07" y Longitud Oeste 61° 49' 41" con una altitud de 180 m.s.n.m.

entre los años 1974-1985, se obtuvo que las condiciones climáticas medias del área

de estudio son:

Precipitación Total Media Anual: 1050 mm.

Evaporación Total Media Anual: 1743 mm.

Temperatura Media Anual: 35,7 °C.

Temperatura Media Mínima Anual: 21 °C.

Temperatura Media Máxima Anual: 31,4 °C.

2.3.2 Topografía

La topografía presenta una alineación regional en direcciones Este-Oeste y NE.

El relieve promedio es de 200 a 300 metros s.n.m entre valles y colinas.

Los valles son anchos y relativamente planos alcanzando una altitud máxima de

175 metros sobre el nivel del mar. Las colinas alcanzan una altitud máxima de 505

metros (Cerro El Brujo), con laderas de inclinación relativamente suave y cimas redondeadas. Está conformada por un 43% de peniplanicies, un 30% de lomeríos, 3% de núcleos montañosos al centro, 5% paisajes de valles. (C.V.G. TECMIN, 1989).

2.3.3 Geomorfología

A escala regional, la zona de El Callao se distingue por un dominio casi total del paisaje de altiplanicie compuesto por un conjunto de lomas, por lo general sujetas localmente a una intensa erosión, cuya actividad ha modelado sus vertientes en alto grado.

Se puede también encontrar a escala regional, un paisaje dominado topográficamente por el sistema de colinas, dicho paisaje no supera en altitud los 140 m.s.n.m; conformado por una superficie de topografía "casi plana" a suavemente inclinada u ondulada, con pendientes, por lo general, inferiores al 8%. (C.V.G. TECMIN, 1989).

A nivel local específicamente en la zona objeto de estudio, según lo observado en el trabajo de campo no existen procesos erosivos severos, manteniéndose un equilibrio morfogenético, debido a la excelente protección que ejerce la cobertura vegetal boscosa en esta zona.

2.3.4 Drenaje

El drenaje forma una red de tipo subsecuente paralelo, es decir, las quebradas drenan por las zonas de debilidad de la formación superficial, determinando el control del drenaje por las fallas locales. Las quebradas son de carácter intermitente, afluentes del río Yuruari, depositando en angostos placeres todos los detritos arrastrados (C.V.G. TECMIN, 1989). En la zona I de Chocó 3 se presentan quebradas

de régimen intermitente que son controladas por el relieve del área. La quebrada de mayor importancia que drena por la concesión es la Iguana, afluente del río Yuruari, el cual bordea casi enteramente a la población de El Callao, y desemboca en el río Cuyuní.

2.3.5 Suelos

Localmente los suelos son por lo general de origen residual, derivados de la meteorización de rocas ígneas, particularmente andesitas y lavas, su textura es comúnmente arcillosa, mezclada con fragmentos subangulosos de cuarzo y rocas altamente meteorizados, también se observan fragmentos de naturaleza ferruginosa de tamaños variables. (C.V.G. TECMIN, Op. cit.).

2.3.6 Vegetación

La vegetación pertenece a un bosque tipo tropical, con formaciones herbáceas y arbustivas de porte medio y alturas promedios entre 15 y 20 m, con árboles emergentes que pueden alcanzar hasta 30 m; mayormente representada por chaparros, chaparro manteco, hierrito, yagrumo, palo blanco, palo de aceite, entre otras. (C.V.G. TECMIN, 1989).

2.4 Geología regional

El Escudo de Guayana forma parte del Precámbrico del Cratón Amazónico y del Oeste de África. Tiene forma oval y su expresión septentrional se encuentra en Venezuela al Sur del río Orinoco, mientras que su parte meridional se adentra hacia Colombia, Brasil, Guyana, Surinam y Guyana Francesa. (Mendoza, V. 2000).

Ocupa más del 50% de la superficie de Venezuela, con sus 4.3 Km² de extensión, siendo a su vez, junto al Escudo Guaporé, el Cratón de mayor área mundial. (Mendoza, V. 2000).

En la parte venezolana comprende rocas arqueozoicas y proterozoicas de diversas litologías, alteradas en mayor o menor escala por episodios geotectónicos mayores (Mendoza, V. Op. cit).

Sobre la base de caracteres petrológicos y tectónicos, el Escudo ha sido dividido en Venezuela en cuatro Provincias Geológicas conocidas como: Imataca, Pastora, Cuchivero-Amazonas y Roraima. (Mendoza, V. 2005). (Figura 2.2).

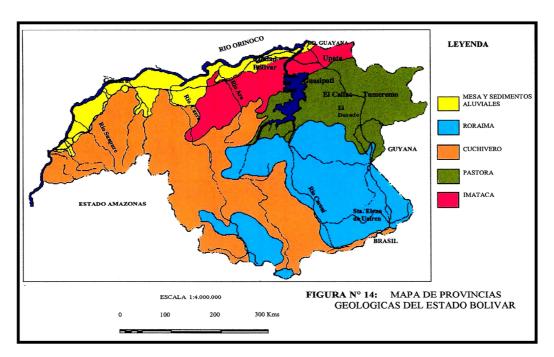


Figura 2.2 Provincias Geológicas del Escudo de Guayana (Mendoza, V. 2005).

Estas Provincias se diferencian en sus direcciones estructurales, asociaciones litológicas, así como también por las edades.

Petrológicamente la Provincia de Imataca (PI) pertenece al denominado cinturón de rocas granulítico, Pastora (PP) a los cinturones de rocas verdes y Cuchivero-Amazonas (PC) se caracteriza por las grandes extensiones de granitos. La Provincia de Roraima es una cobertura discordante sobre rocas pertenecientes a Pastora o Cuchivero-Amazonas (Mendoza, V. 2005).

2.4.1 Provincia Geológica de Imataca (PI)

Se extiende en dirección SO-NE desde las proximidades del río Caura hasta el Delta del Orinoco y en dirección NO-SE aflora desde el curso del río Orinoco hasta la falla de Guri por unos 550 Km. y 80 Km. respectivamente. Litológicamente formada por gneises graníticos y granulitas félsicas, anfibolitas y granulitas máficas, y hasta ultramáficas y cantidades menores de formaciones bandeadas de hierro (BIF), dolomitas, charnoskitas, anortositas y granitos intrusivos más jóvenes y remanentes erosionales de menos metamorfismo. (Mendoza, V. Op. cit).

2.4.2 Provincia Geológica de Pastora (PP)

Se extiende desde la falla de Guri al Norte hasta las proximidades del Parque Nacional Canaima al Sur (Km. 95) por el Este hasta los límites con la zona en Reclamación del Esequibo y al Oeste hasta el río Caura. Esta Provincia del Oro, (Mendoza, V. 2000) está formada por Cinturones de Rocas Verdes (CRV) delgados, más antiguos y tectonizados, tipo Carichapo y CRV, más anchos, jóvenes y menos tectonizados tipo Botanamo, y por complejos graníticos sódico, como el Complejo de Supamo. (Mendoza, V. 2005).

Toda la secuencia de los CRV de la PP fue intrusionada por granitos potásicos, dioritas y rocas gabroides con escasos y no bien definidos complejos máficos - ultramáficos, además de intrusiones y sills de diabasas y rocas asociadas noritico-

gabroides con algo de cuarzo. Los cinturones de rocas verdes más antiguos tienen tendencias estructurales próximas a N-S (N10°E a N20°O), mientras que los más jóvenes casi siempre muestran dependencias en ángulos rectos con las anteriores próximas a E-O (N70°-80°E); lográndose observar el choque de estas dos tendencias y de ambos tipos de CRV en las imágenes de radar que cubren la zona del río Marwani, quedando detallado en los estudios de C.V.G. Tecmin CA-USGS (Salazar E. y otros, 1989 en Mendoza, V. 2005).

2.4.2.1 Cinturones de Rocas Verdes (CRV) del Escudo de Guayana: los cinturones de rocas verdes son áreas dentro del escudo de Guayana que se caracterizan por un metamorfismo de bajo grado en abundantes rocas ígneas básicas. Los cinturones de rocas verdes en el Escudo de Guayana lo conforma el grupo Pastora (Venezuela); el grupo Barama-Mazaruni de Guyana, el Grupo Marowijne y el Grupo Coeroni de Suriname, la Serie Paramaca (Grupos Orapú y Bonidoro) de la Guyana Francesa y el grupo Villa Nova de Brasil, el CRV de Parima-Cauarame del Alto Orinoco-Surucucú de Brasil. Estos CRV y rocas graníticas asociadas forman la gran provincia Maroni-Itacaiuna, un cinturón móvil que forma gran parte del Cratón Amazónico. Los CRV más antiguos de Pastora son posiblemente correlacionables con CRV del Birrimian de África Occidental. (Mendoza, V. 2005).

Los CRV, están por lo general asociados estrechamente con procesos relacionados con fluidos y mineralización de oro en rocas huéspedes posteriores a zonas de cizallamiento. Los depósitos en forma de filones de cuarzo auríferos se desarrollaron durante y brevemente después de las formaciones de los cinturones de rocas verdes. En la figura 2.3 se puede observar la ubicación de los cinturones de rocas verdes en el Escudo de Guayana. (Mendoza, V. 2005).

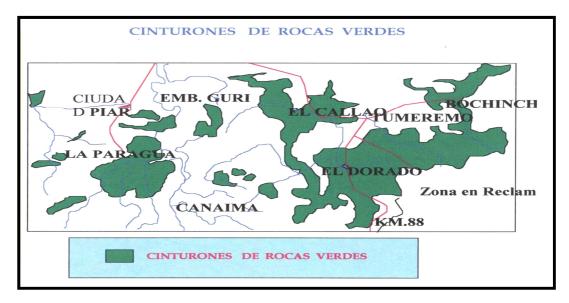


Figura 2.3 Cinturones de Rocas Verdes del Escudo de Guayana. (Mendoza, V. 2000).

2.4.2.2 Depósitos minerales de los Cinturones de Rocas Verdes (CRV): el crecimiento rápido y la estabilización de la corteza continental con un régimen de alto flujo de calor durante el Neoarquezoico y Paleoproterozoico resultaron en acumulación abundante en rocas de los CRV, acompañados o no de sulfuros masivos volcanogénicos y komatitas ricas en níquel hacia la base de los CRV. La asociación litológica que compone los CRV es similar a la observada en rocas verdes de márgenes convergentes modernos de la cuenca del pacífico que contiene depósitos de oro y de sulfuros masivos. En contraste, los depósitos minerales que se asocian a ambientes más cercanos al continente e intracontinentales asociados frecuentemente a magmatismo anorogénico, fueron excepcionalmente importantes y abundantes durante el Mesoproterozoico, cuando se va formando el gran supercontinente Rodinia. (Mendoza, V. Op. cit).

2.4.2.3 Depósitos de Oro en los CRV: el oro en Venezuela se produce depósitos principalmente en tipo veta, los cuales están clasificados predominantemente en depósitos mesotermales u orogénico. Todos los depósitos muestran una gran similitud y características minerales iguales. Las vetas son continuas entre 2 cm.- 10 m de espesor, se extiende en dirección desde 50 m hasta 5 Km. El yacimiento principal está proyectado sobre estructuras estratificadas de metatobas. Este rumbo parece quedar a lo largo de un eje de un corredor sinclinal. La mayor ganga se compone de cuarzo, adicionalmente con albita, ankerita y turmalina. El yacimiento aurífero está compuesto principalmente de pirita con solamente cantidades menores de otros sulfuros (Calcopirita, Pirrotita y Arsenopirita). El oro se encuentra en la fractura entre el cuarzo y la pirita. Todas las rocas de las vetas están fuertemente Silicificadas, Carbonatizadas o Albitizadas, dependiendo de la composición química de la litología de la roca caja (Mendoza, V. Op. cit).

En orden decreciente de abundancia, los principales tipos de depósitos de oro en los CRV son vetas de cuarzo y carbonatos, bajas en sulfuros, con oro, depósitos de sulfuros diseminados, asociados a sulfuros masivos o a pórfidos de Cu- Au, "Stock Works", sulfuros masivos con oro y vetas de cuarzo muy ricas en carbonatos. (Mendoza, V. 2000).

Los CRV del Escudo de Guayana contienen importantes depósitos de vetas hipotermales de cuarzo aurífero del subtipo de bajo contenido de sulfuros (<5% en promedio). Tales vetas están asociadas a zonas de cizalla y fallas, y en general siguen tres tendencias estructurales: 1) noreste tipo Colombia- América de MINERVEN, Lo Increíble, Bochinche, Las Cristinas y otras, 2) norte-sur tipo Croacia-Chocó, Fosforito, etc., 3) noroeste como Laguna, Camorra y otras. Sin embargo, las mayores concentraciones de oro se produce en la intersección de zonas de cizallas, como la zona principal de La Camorra con la Veta Betzy (N60-70°O versus E-O,

aproximadamente) o la intersección de la veta Chile (E-O) con la veta Laguna- Santa Rita (N60-70°E), o la veta América (N70°E) con la veta Colombia (N45°E) (Mendoza, V. 2000).

Los distritos auríferos más importantes de la Provincia Pastora son El Callao, Lo Increíble-Tomi, Las Cristinas, Uroy El Foco, El Dorado-Camorra, Bochinche-Introducción, Marwani y EL Manteco. Al Oeste del Caroní también existe mineralización aurífera en los CRV y algo en los CRV de La Esperanza- El Torno sobre Imataca, pero son mucho menos importantes que los localizados al Este del Caroní. La tendencia estructural más dominante e importante es la NE, subparalela a la Falla de Guri N70°E, con diques y sills de diabasas emplazadas a lo largo de ellas, como la Falla de Guasipati, la de Laguna. (Mendoza, V. 2000).

2.4.3 Provincia Geológica de Cuchivero-Amazonas (PCA)

Denomina a un grupo de rocas intrusivas a volcánicas calcoalcalinas félsicas y rocas sedimentarias que intrusionaron y se depositaron sobre un basamento de CRV granitos sódicos asociados. (Mendoza, V. 2005).

Esta Provincia de edad Paleoproterozoico tardío a Mesoproterozoico incluye rocas volcánicas riolíticas y asociadas, comagmáticas con granitos calcoalcalinos del Grupo Cuchivero; areniscas, conglomerados, limolitas, tobas y lutitas del Grupo Roraima; sills, diques, apófisis, stocks de rocas diabásicas-granodioritas cuarcíferas de la Asociación Avanadero, y el granito Rapakivi de El Parguaza y rocas de Complejos Alcalinos como el de La Churuata asociados, así como intrusiones de carbonatitas de Cerro Impacto, lamprófiros y kimberlitas eclogíticas de Guaniamo. Esta provincia parece extenderse hacia el Sur-SO en el estado Amazonas formando gran parte de las rocas del no diferenciado Proterozoico. (Mendoza, V. 2005).

2.4.4 Provincia Geológica de Roraima (PR)

Esta provincia se compone de rocas del Grupo Roraima con diabasas y rocas gabronoríticas cuarcíferas a dioríticas cuarcíferas de la Asociación Avanadero. Se extiende desde los límites del Parque Nacional Canaima, hacia el Km. 95 cerca de la Piedra de la Virgen, hasta Santa Elena de Uairén en dirección NS y desde el río Venamo hasta las proximidades del río Paragua. (Mendoza, V. 2005).

La PR, carece de marcado tectonismo (sinclinales suaves muy abiertos y de muy bajo buzamiento) con algún fallamiento, incluso fallas de arrastre como el Tepuy de Parú. No muestran metamorfismo regional. Solo se registran metamorfismo de contacto de rocas de Roraima con granitos intrusivos, y de rocas máficas de la asociación Avanadero. (Mendoza, V. 2005).

2.5 Geología local

2.5.1 Provincia Geológica de Pastora

2.5.1.1 División litoestratigráfica: (Menéndez, A. 1994 en Mendoza, V. 2005) propuso dividir la Provincia Geológica de Pastora de la siguiente manera. (Figura 2.4).

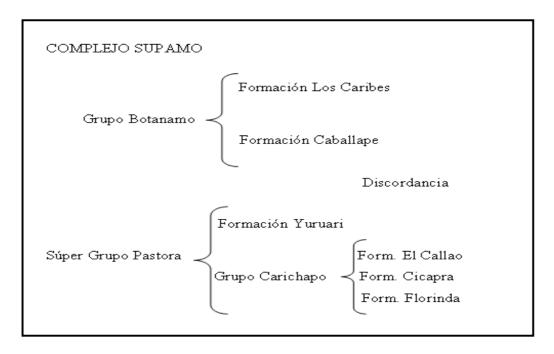


Figura 2.4 División litoestratigráfica de la Provincia Geológica de Pastora. (Menéndez, A. 1994 en Mendoza, V. 2005).

2.5.1.2 Supergrupo Pastora: en la región de Guasipati-El Callao se compone del Grupo Carichapo (Formaciones Florinda, Cicapra y El Callao) y de la Formación Yuruari (Menéndez, A. 1968). Para Menéndez la Formación El Callao es la más baja en la secuencia, su base se desconoce y aparece siempre como un contacto intrusivo con rocas graníticas del Complejo de Supamo y su contacto superior es de falla a transicional con la Formación Yuruari. El Callao según Menéndez, A. (1968) aparece parcialmente equivalente a Cicapra.

Formación Florinda: fue inicialmente prospectada para oro por CVG Tecmin C.A. (1989) y redefinida por Menéndez, A. (1994) en Mendoza, V. 2005, como equivalente a la parte inferior de la Formación El Callao y cuando ésta última está ausente se localiza infrayacente a la Formación Cicapra. Litológicamente la FF está compuesta de metabasaltos almohadillados, tholeíticos-komatíticos o magnesianos,

intercalados con rocas ígneas posiblemente intrusivas alteradas con abundante talco y carbonatos, de composición komatítica. (Menéndez, A. 1968 en Mendoza, V. 2005).

Formación Cicapra: presenta un espesor de 2.000 m de paquetes alternantes rítmicamente compuestos cada uno de tobas básicas submarinas, grauvacas turbidíticas y limolitas volcanogénicas, tobas líticas, tobas brechoides, aglomerados volcánicos y en el tope cherts hematítico-manganesíferos (BIF). Estas rocas están metamorfizadas a la facies de esquistos verdes, con esquistos porfiroblásticos formados de actinolita-epidota-biotita-albita, con poco cuarzo.

De hecho muchas de estas rocas tienen composición química komatítica y basalto-komatítica. Geomorfológicamente ocupan áreas bajas planas y sus suelos son lateritas arcillosas color vino tinto. El contacto de Cicapra y El Callao es de cuña de falla, pero el contacto de Cicapra sólo con Yuruari parece ser gradacional. (Mendoza, V. 2000).

Formación el Callao: el espesor estimado de esta .formación es de 3.000.m, estando formada casi exclusivamente de: a) Lavas basálticas bajas en potasio y altas en hierro, b) Flujos de lavas andesíticos con un predominio transicional entre las lavas basálticas y las andesíticas, c) Basandesitas con estructuras almohadilladas, d) Brechas de flujos al tope levemente metamorfizadas y e) Bif o cuarcitas, chert ferruginosas y manganesíferos, esquistos talcosos a basaltos komatíticos-tholeíticos, aparecen en pequeños volúmenes. (Mendoza, V. 2000).

Formación Yuruari: según Menéndez, A. (1968) suprayace concordantemente, a las formaciones El Callao y Cicapra. Sin embargo, al menos en Lo Increíble, la Formación El Callao está por encima de la Formación Yuruari, en contacto de falla inversa de ángulo bajo a intermedio. La FY se compone litológicamente de filitas, esquistos y metatobas félsicas, metalutitas negras de hasta 50 m de espesor. Los

esquistos y filitas no parecen ser meta sedimentarios, sino más bien tobas y lavas félsicas (dacíticas y riodacíticas) metamorfizadas. Cerca del contacto de las formaciones Yuruari-El Callao se observan pequeñas intrusiones porfídicas félsicas en las lavas de El Callao. Se ha interpretado que tales felsitas intrusivas en El Callao son comagmáticas con las felsitas de Yuruari.

2.5.1.3 Grupo Botanamo: (Benaim, N. 1972 en Mendoza, V. 2005) definió al Grupo Botanamo al Sur de la Región de Guasipati, en el CRV de El Dorado-Marwani, como constituido por las formaciones Caballape y Los Caribes.

Formación Caballape: yacen discordantemente sobre rocas del Supergrupo Pastora y no son intrusionadas por los granitos del Complejo de Supamo, es decir que claramente son de edad post-Pastora y post-Supamo. En la zona de El Callao-Tumeremo, quebrada Caballape, aflora una buena sección de grauvacas gradadas, limolitas y conglomerados (80%) con cantidades menores de tobas, brechas y flujos piroclásticos de composición andesítica a riodacítica que corresponde a la parte inferior o basal de la Formación Caballape. Esta secuencia fue intrusionada por sills de gabros y fueron conjuntamente plegados, replegados y metamorfizados con ella, como se observa en los desarrollos mineros de McKenzie y Charles Richard de la mina aurífera Tomi, explotada a cielo abierto y localizada a unos 12 Kms al NE de El Callao y próxima a la quebrada Caballape.

Formación Los Caribes: consiste de una intercalación de filitas grises y verdosas que gradan a rojas, que son las más abundantes y se interestratifican con areniscas rojas, con conglomerados polimícticos, limolitas y algunas tobas félsicas. El paso de la Formación Caballape a la Formación Los Caribes fue transicional y gradacional y así parece ser también el cambio de una atmósfera cada vez menos reductora a una atmósfera cada vez más oxidante. (Mendoza, V. 2000).

2.5.1.4 Complejo de Supamo: fue considerado por Mendoza V. 2005 como un conjunto de rocas graníticas, intrusivas, y/o reactivadas, en rocas del Supergrupo Pastora, con alto contenido de Na₂O, tales como tonalitas, trondjemitas, granodioritas (TTG) cuarzo-monzonitas, gneises y migmatitas equivalentes. Las rocas graníticas con normal a alto contenido de K₂O y bajo a normal de Na₂O, o granitos "sensus estricto", fueron consideradas por esos autores, como granitos más jóvenes, evolucionados e inclusive intrusivos en el Complejo de Supamo y hasta en los CRV más jóvenes como el de Botanamo. Los granitos del Complejo de Supamo, generalmente, forman domos expandidos y arqueados contra los apretados y replegados sinformes de CRV, como los domos de El Manteco, Santa Justa y otros. Asociados a estas rocas existen una serie de plutones pequeños y pórfidos ricos en cuarzo. Geomorfológicamente forman áreas bajas y planas, sabanas, con escasa vegetación y suelos muy arenosos, ricos en cuarzo y en vetas de cuarzo estériles.

2.6 Geología de Chocó 3 zona I

De acuerdo al mapa geológico de la zona de estudio, realizado en estudios anteriores por C.V.G TECMIN, (1989), el área está localmente formada por Cinturones de Rocas Verdes perteneciente al Proterozoico inferior específicamente la Formación El Callao: Lavas básicas anfibolitizadas, almohadilladas, localmente de afinidad tholeítica; basandesitas, esquistos talco-carbonáticos y chert ferruginoso.

Las rocas presentan una variación litológica y textural, manifestándose principalmente en los cambios de color que van desde el gris verdoso hasta el verde oscuro, casi todas estas rocas son de grano muy fino. También se observan aluviones constituidos de arenas, arcillas, limos, gravas de cuarzo y fragmentos de roca meteorizada.

CAPÍTULO III MARCO TEÓRICO

3.1 Antecedentes de la investigación

En el año 1993 la Corporación Venezolana de Guayana (C.V.G MINERVEN) encomendó a C.V.G. TECMIN, C.A. la ejecución de una prospección geológica-geoquímica a escala 1:25.000 de la concesión minera Chocó 3 y de la zona prioritaria denominada subzona A, a escala 1:5.000, la zona fue escogida tomando como base las recomendaciones del estudio integrado de los trabajos de interpretaciones fotogeológicas realizados por C.V.G TECMIN y aereomagnéticos (GEOEXPERT) de las parcelas asignadas a C.V.G. MINERVEN, C.A.

Este trabajo se basó en la apertura de un eje de 2.080 metros de largo con rumbo N76°E, y perpendicular al mismo se abrieron picas con rumbos N14°O y de 2.000 a 2.200 metros de largo, separadas cada 400 metros. En total se abrieron 13 Km. de pica a las cuales se les efectuó un muestreo geológico-geoquímico, el cual consistió en la recolección de 322 muestras de suelo en una malla de 400*40 metros.

Los análisis de las muestras de suelo y de las rocas recolectadas en campo fueron realizados en Triad Laboratorios de Venezuela, C.A., utilizando los métodos de espectrometría de emisión de plasma (ICP) y ensayo al fuego para determinar el oro con un límite de 5 ppb.

En relación a los resultados del oro se observaron valores considerablemente elevados con un máximo de 5214 ppb (5.2 gr/t). Asimismo, para otros elementos de interés se observan valores máximos altos, por ejemplo para el Pb= 612 ppm, Ag=1.5 ppm, y As=7 ppm.

Finalmente en los estudios geológicos realizados en Chocó 3 se pudo observar la ocurrencia secundaria de oro tanto en la quebrada San Juan de Cubaral como en la quebrada La Iguana las cuales atraviesan la parcela Chocó 3 y la subzona A, también se obtuvieron 4 anomalías polimetálicas que indican la presencia de sulfuros sobre estructuras NE-SO tipo zonas de cizallas, es decir tipo "SHEAR ZONE".

3.2 Bases teóricas

3.2.1 Geoquímica

Consiste en medir sistemáticamente una o más propiedades químicas, principalmente el contenido de elementos menores y trazas de una sustancia o material que se presente en estado natural, como por ejemplo, rocas frescas y mineralizadas (fragmentos, núcleos de perforación y rodados), suelos, sedimentos activos fluviales o lacustres, detritos glaciales, vegetación, agua superficial y subterránea, vapor de agua, gas, aire, entre otros. (Foster, R.1992).

El objetivo de la Geoquímica, como herramienta de búsqueda, es identificar y localizar contenidos anormales de uno o varios elementos químicos, de tal manera, que cuando se identifique y se conozca su distribución podamos localizar yacimientos ocultos, asociados a ambientes geológicos favorables para su formación.

El objeto de la búsqueda de yacimientos puede ser económico o científico. En el primer caso, es más limitado a un caso particular, pero los resultados son inmediatos y efectivos. En el segundo caso, involucra a la geología desde un punto de vista regional y genera expectativas sobre el ambiente de formación del depósito.

La geoquímica como herramienta de la exploración mineral ha sido utilizada desde la antigüedad, cuando el ser humano inició la explotación de metales. Los métodos de exploración geoquímica iniciaron un ascenso en su utilización cuando en 1930 se inventó el espectrógrafo para análisis de suelos y plantas. En los años 1940 y 1950 se introdujo la utilización de métodos hidrogeoquímicos, además que la espectrografía seguía evolucionando. (Foster, R.1992).

3.2.2 Prospección geoquímica

La prospección geoquímica consiste en el análisis de muestras de sedimentos de suelos, aguas o incluso de plantas que puedan concentrar elementos químicos relacionados con una determinada mineralización.

La geoquímica del yacimiento tiene como finalidad conocer con el mayor detalle la distribución de los elementos químicos relacionados de forma directa o indirecta con la mineralización, o afectados por los procesos que han formado o modificado el yacimiento.

3.2.3 Anomalía geoquímica

Una anomalía geoquímica es una variación de la distribución geoquímica normal correspondiente a un área o a un ambiente geoquímico. Una anomalía se expresa por medio de números, que se puede separar de un grupo más amplio de números constituyendo el fondo geoquímico. Otros factores de una anomalía geoquímica de importancia son el marco topográfico y la asociación geológica. (Morales, A. 1985).

3.2.4 Anomalías en suelos residuales

El objetivo del estudio geoquímico de suelos consiste en el reconocimiento de la distribución primaria de elementos seleccionados en las rocas subyacentes. En los suelos residuales generalmente la distribución primaria se expresa todavía en forma relativamente clara, modificada por los efectos de varios procesos superficiales. Algunos de estos procesos tienden a homogenizar el suelo y por consiguiente borrar la distribución primaria como entre otros la helada, la actividad de plantas y la gravedad.

3.2.5 Anomalías en agua

Una distribución anómala de elementos en aguas subterráneas y meteóricas se denomina anomalía hidrogeoquímica. Como generalmente los elementos son transportados en forma disuelta en las aguas naturales, los elementos más aptos para la exploración geoquímica de aguas son los elementos relativamente móviles. Las anomalías hidrogeoquímicas, especialmente en aguas superficiales, pueden ser de origen complejo y muestran una fuerte dependencia de cambios climáticos (precipitación, escorrentía y otros), hechos que dificultan su uso en prospección de minerales.

3.2.6 Anomalías en sedimentos

Anomalía geoquímica presente en sedimentos de drenaje (sedimentos de manantiales, manaderos - percolados, llanura de inundación, activos de corriente y lagos). Los sedimentos activos de corrientes incluyen material clástico e hidromórfico de diverso origen, son un medio utilizado para reconocimiento geoquímico general porque desarrollan anomalías que pueden extenderse varios kilómetros de su fuente.

3.2.7 Estadística

La estadística es la ciencia que tiene por objeto el agrupamiento metódico de datos numéricos y determinar sus relaciones por medio de inferencias de la población de la cual se extraen los datos.

3.2.8 Geoestadística

Es una rama de la estadística que trata fenómenos espaciales. Su interés primordial es la estimación, predicción y simulación de dichos fenómenos. Se puede definir como una aplicación de la teoría de probabilidades a la estimación estadística de variables espaciales. La geoestadística ofrece una manera de describir la continuidad espacial, que es un rasgo distintivo esencial de muchos fenómenos naturales, y proporciona adaptaciones de las técnicas clásicas de regresión para tomar ventajas de esta continuidad.

3.2.9 Valor normal de fondo

El término "fondo" (Background) se refiere a la abundancia normal de un elemento en los materiales terrestres no mineralizados. Considerando dos diferentes tipos de materiales terrestres la abundancia normal de un distinto elemento en un tipo de material terrestre muy probablemente difiere de su abundancia en otro tipo de material terrestre. Por ejemplo el contenido medio en K_2O de granitos es 5,46 % en peso, de basaltos es 0,82% en peso. La distribución de un distinto elemento en un material terrestre apenas es uniforme. Por esto se recomienda considerar el fondo como un intervalo de valores en vez de tratarlo como un valor absoluto, incluso cuando se observa un ambiente relativamente uniforme. La naturaleza del ambiente por sí mismo puede influir la distribución, puesto que bajo distintas condiciones unos

elementos pueden ser enriquecidos y otros pueden ser empobrecidos. Por consiguiente, en el estudio de muestras de un área no conocida se debería determinar o por lo menos tener en cuenta el rango de los valores del fondo. (Morales, A. 1985).

3.2.10 Valor umbral

El valor umbral designa la concentración de un elemento indicador sobre una muestra que se puede considerar anómala. En el caso más sencillo el valor umbral coincide con el límite superior de los valores del fondo, los valores mayores son anomalías.

3.2.11 Diagrama de caja

Es una presentación visual que describe al mismo tiempo varias características importantes de un conjunto de datos, tales como el centro, la dispersión, la simetría o asimetría y la identificación de observaciones atípicas.

El diagrama de caja representa los tres cuartiles, y los valores mínimo y máximo de los datos sobre un rectángulo (caja), alineado horizontal o verticalmente, la construcción del mismo se realiza de la siguiente forma:

- 1. El rectángulo delimita el rango intercuartílico con la arista izquierda (o inferior) ubicada en el primer cuartil \boldsymbol{Q}_1 , y la arista derecha (o superior) en el tercer cuartil \boldsymbol{Q}_3 .
- 2. Se dibuja una línea a través del rectángulo en la posición que corresponde al segundo cuartil.

- 3. De cualquiera de las aristas del rectángulo se extiende una línea, o bigote, que va hacia los valores extremos (valor mínimo y valor máximo). Estas son observaciones que se encuentran entre cero y 1.5 veces el rango intercuartílico a partir de las aristas del rectángulo.
- 4. Las observaciones que están entre 1.5 y 3 veces el rango intercuartílico a partir de las aristas del rectángulo reciben el nombre de valores atípicos. Las observaciones que están más allá de tres veces el rango intercuartílico a partir de las aristas del rectángulo se conocen como valores atípicos extremos. En ocasiones se emplean diferentes símbolos (como círculos vacíos o llenos), para identificar los dos tipos de valores atípicos.

A veces, los diagramas de caja reciben el nombre de diagramas de caja y bigotes. Nótese que el rectángulo o caja representa el 50% de los datos que particularmente están ubicados en la zona central de la distribución. La caja representa el cuerpo de la distribución y los bigotes sus colas.

3.2.12 Diagrama de dispersión

Diagrama de dispersión o nube de puntos es una representación gráfica de la relación entre dos variables, muy utilizada en las fases de comprobación de teorías y en el diseño de soluciones manteniendo los resultados obtenidos. Un diagrama de dispersión sugiere correlaciones entre las variables. La correlación puede ser positiva (aumento), negativa (descenso), o nula (las variables no están correlacionadas).

3.2.13 Mapa

Es una representación plana de la superficie terrestre o parte de ella, donde se registran hechos o conjuntos de hechos en forma sintética o analítica, conservando las relaciones bidimensional y tridimensional del terreno.

3.2.14 Mapa geológico

Es la representación en un plano de la geología de la zona.

3.2.15 Elementos de un mapa

Proyección, escala.

Información marginal.

Signos convencionales.

Colores convencionales.

Toponimia.

Título, recuadro y detalles complementarios.

3.2.16 Elementos de un mapa geológico

Conceptuales, relacionados con las agrupaciones de materia geológica.

Proyectivos.

Complementarios, afectos a leyenda y esquemas aclaratorios.

3.2.17 Mapa topográfico

Son los que permiten conocer la topografía del terreno a través de sombreados, curvas de nivel u otros sistemas de representación gráfica.

3.2.18 Mapa geoquímico

En este tipo de mapas se refleja el estudio de la distribución, proporción y asociación de los elementos químicos de la corteza terrestre y de las leyes que las condicionan.

3.2.19 Plano

Son mapas específicos que evalúan o muestran extensiones muy pequeñas y específicas.

3.3 Términos básicos

3.3.1 Oro

El oro es un elemento metálico, denso y blando, de aspecto amarillo brillante. El oro se encuentra en la naturaleza en las vetas de cuarzo y en los depósitos de aluviones secundarios como metal en estado libre o combinado. Casi siempre se presenta combinado con cantidades variables de plata. La aleación natural oro-plata recibe el nombre de oro argentífero.

3.3.2 Plomo

Es un elemento químico de la tabla periódica, cuyo símbolo es Pb, y su número atómico es 82 según la tabla actual, posee gran elasticidad molecular. Cabe destacar que la elasticidad de este elemento depende de la temperatura del ambiente. El plomo es un metal pesado de densidad relativa o gravedad específica 11,4 a 16 °C, de color azulado. Es flexible, inelástico y se funde con facilidad. (Rodríguez, S. 1986).

3.3.3 Zinc

El zinc es un elemento químico de número atómico 30 y símbolo Zn situado en el grupo 12 de la tabla periódica de los elementos. Este elemento presenta cierto parecido con el magnesio, y con el cadmio de su grupo, pero del mercurio se aparta mucho por las singulares propiedades físicas y químicas de éste.

3.3.4 Hierro

Es un elemento químico de número atómico 26 situado en el grupo 8, periodo 4 de la tabla periódica de los elementos, su símbolo es Fe. Es un metal maleable, de color gris plateado y presenta propiedades magnéticas; es ferromagnético a temperatura ambiente y presión atmosférica. Este metal de transición es el cuarto elemento más abundante en la corteza terrestre, representando un 5% y, entre los metales, sólo el aluminio es más abundante. (Rodríguez, S. 1986).

3.3.5 Cobre

Es un elemento químico de número atómico 29. Se trata de un metal de transición de color rojizo y brillo metálico que, junto con la plata y el oro, forma parte

de la llamada familia del cobre, se caracteriza por ser uno de los mejores conductores de electricidad (el segundo luego de la plata).

3.3.6 Cuarzo

Mineral perteneciente a la clase de los tectosilicatos y cuya formula es SiO_2 , es uno de los minerales mas abundantes y es el constituyente principal de rocas ígneas félsicas como granitos, riolitas y pegmatitas, así como es el componente más difundido en las areniscas y en ciertas rocas metamórficas como cuarcitas y esquistos micáceos. Es típica su alta dureza (7).

3.3.7 Roca meteorizada (RM)

Se refiere a roca parcialmente alterada por la meteorización pero substancialmente dura. Sus pesos unitarios son menores que los de la roca fresca, al igual que su resistencia a la comprensión, la cual varía entre amplios rangos según su grado de alteración. Los planos de las discontinuidades suelen estar abiertos y oxidados.

3.3.8 Roca fresca (RF)

Son rocas cuyos componentes minerales no han sufrido procesos de meteorización. Estos materiales pueden ser blandos o duros según la naturaleza de los minerales que la componen.

3.3.9 Trincheras

Son excavaciones que se realizan con la finalidad de dar a conocer las concentraciones del mineral útil y sirven de referencia mineralógica que definen las tendencias estructurales que ellas presentan, y a su vez nos dan el apoyo en la ubicación de los sondeos.

3.3.10 Sondeos exploratorios

Los sondeos son perforaciones superficiales y subterráneas que se realizan para determinar el comportamiento lateral y en profundidad de la estructura, permitiendo de esta forma cuantificar posibles zonas de interés.

CAPÍTULO IV METODOLOGÍA DE TRABAJO

4.1 Nivel de investigación

El desarrollo del estudio geológico implica la necesidad de caracterizar los fenómenos a estudiar, partiendo de su naturaleza, propiedades, trabajos previos, entre otros, es por ello que la investigación que se va a tomar como patrón para la realización de éste trabajo es de tipo exploratorio debido a que la zona presenta escasos estudios de exploración.

También se considera una investigación de tipo descriptiva según (Hurtado de Barrera, 2001), ya que se basa en caracterizar un área levantada topográficamente con la finalidad de identificar y dar una visión de la tendencia y cuantificación del mineral aurífero en superficie de la zona I de Chocó 3.

4.2 Diseño de investigación

La estrategia utilizada en este trabajo consiste en una investigación documental basada en una revisión bibliográfica lo más amplia posible, que incluye la recopilación de la información referente a la zona de estudio, posterior a esto se realiza una investigación de campo que comprenda la extracción de muestras y estudios geológicos de superficie.

4.3 Actividades realizadas

Para el desarrollo de la investigación se tomó en consideración, como punto de partida, la documentación, investigación y recopilación bibliográfica (antecedentes de la zona de estudio, mapas topográficos, mapas geológicos, geología regional, geología local, etc.) elaborados por C.V.G TECMIN (1993); el trabajo de campo abarcó reconocimiento del área de estudio, ubicación y elaboración de picas, calicatas, recolección, descripción y análisis de muestras de subsuelo, realización de mapas geológico, topográfico y geoquímico, así como su posterior análisis e interpretación.

4.4 Flujograma de la metodología

La metodología empleada para cumplir los objetivos propuestos está representada en la figura 4.1, donde se observan las diferentes actividades que se realizaron durante la evaluación geológica – geoquímica de la zona a prospectar.

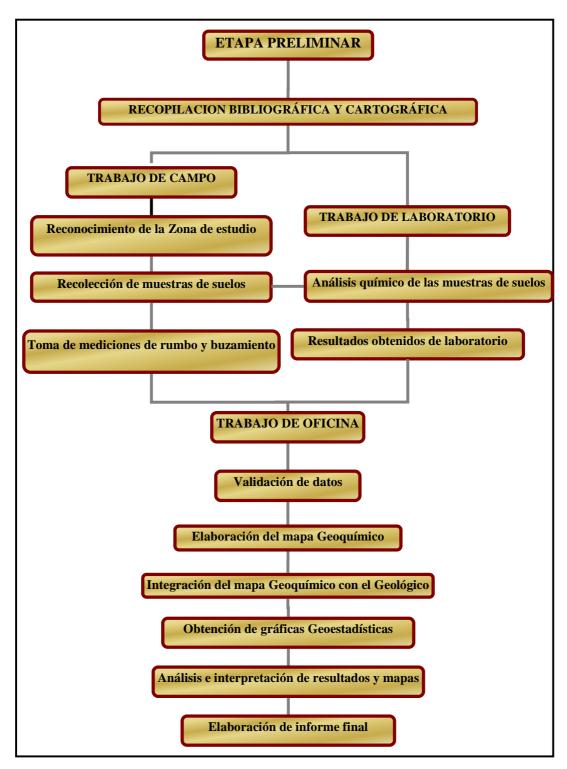


Figura 4.1 Flujograma de la metodología.

4.4.1 Recopilación cartográfica y bibliográfica

En esta etapa se logró investigar y recopilar información concerniente al área a estudiar, considerando lo siguiente:

Levantamientos geológicos, topográficos y datos sobre la geología de la zona, realizados por C.V.G. Minerven y C.V.G Tecmin, T.M.A, C.A. (1989).

4.4.2 Trabajo de campo

4.4.2.1 Reconocimiento de la zona de estudio: se realizó un recorrido por la zona de estudio, para confirmar lo visualizado en el mapa base (geología, drenaje y vialidad de la zona).

4.4.2.2 Recolección de muestras de suelos: la recolección de muestras de suelos se llevó a cabo sobre una red de picas levantadas topográficamente con una línea base (EJE CENTRAL) con dirección NE-SO de 900 metros de largo y 10 líneas transversales (PICAS) con dirección NO-SE; cada pica tiene 600 metros en ambos sentidos, espaciadas entre ellas cada 100 metros, para cubrir un área total de 108 hectáreas. Las muestras de suelo fueron tomadas sobre las picas con separación de cada 25 metros, coincidiendo un punto de muestreo sobre el eje central en cada transversal formando con esto una malla cerrada de (100 x 25) m, en donde se recolectaron la cantidad de 490 muestras.

Estas muestras de suelos fueron extraídas del fondo de la calicata cuyas dimensiones es de aproximadamente 25 cm de diámetro por 50 cm de profundidad, luego se procedió a colocarlas en la lona plástica (hule negro), a su vez se realizó anotaciones en la libreta de campo las características visibles de la muestra como color y textura, y la ubicación donde fueron extraídas cada una de ellas. A

continuación se procedió a ejecutar la homogenización y cuarteo para eliminar restos de plantas, raíces o fragmentos de rocas que puedan estar presentes en la muestra. Seguidamente se toma la muestra de manera diagonal y se procede a identificarla y envasarla (la codificación presente en cada muestra es tomada para elaborar la orden a laboratorio para el posterior análisis de la misma). En la figura 4.2 se puede observar la homogenización, cuarteo, codificación y envase de la muestra.

Figura 4.2 Homogenización, cuarteo, codificación y envase de las muestras.

4.4.2.3 Toma de mediciones de rumbo y buzamiento sobre los afloramientos: utilizando una brújula tipo Brunton se llevó a cabo esta actividad midiendo rumbo y buzamiento a los afloramientos presentes en la zona de estudio.

4.4.3 Trabajo de laboratorio

4.4.3.1 Análisis químico de las muestras de suelo: los análisis de las diferentes muestras de suelo recolectadas fueron realizados en el laboratorio industrial de la compañía C.V.G. Minerven utilizando el método de espectrometría de absorción atómica, los resultados de los análisis se expresan en ppb para los elementos Au, Cu, Zn y Pb, y en ppm para el elemento Fe; para ello se tomó en cuenta el uso de los equipos adecuados de protección industrial como: guantes de tela y guantes de gomas, mascarilla para gases, lentes, batas y botas de seguridad.

Procedimiento para realizar el análisis químico de las muestras de suelos es el siguiente:

Se pesan cada una de las muestras frescas (recolectadas en campo), en bandejas de aluminio previamente identificadas. (Figura 4.3).

Figura 4.3 Muestras previamente identificadas en bandejas de aluminio.

Luego se colocan a secar en el horno a una temperatura de 300 °C, durante 4 horas. Transcurrido el tiempo programado se pesan nuevamente las muestras con la finalidad de obtener el peso final y así calcular la humedad de cada muestra. Posteriormente, se tritura y pulveriza cada muestra, esto depende del tamaño de grano de la muestra y presencia de fragmentos de rocas en la misma, es decir, si el tamaño de grano es fino y no hay presencia de fragmentos de rocas ésta solo se pasa por la máquina pulverizadora; mientras que si el tamaño de grano es grueso o hay presencia de fragmentos de roca ésta se pasa por ambas máquinas, primero por la trituradora y luego por la pulverizadora, colocando las muestras en bolsas de papel marrón (Figura 4.4).

Figura 4.4 Muestras pulverizadas.

Una vez que estén pulverizadas todas las muestras las someto al proceso de digestión, para ello se pesa exactamente 1 gr de cada muestra para ser introducido en un porta muestra, mejor conocido como carrusel, este paso se realiza con sumo cuidado de forma que el material introducido en el porta muestra permanezca en el fondo del envase y no quede material en las paredes del mismo. En la figura 4.5, se observa el porta muestra o carrusel.

Figura 4.5 Muestras introducidas en el carrusel.

Luego se prepara 20 ml de agua regia y se introduce en cada uno de los envases que contiene el carrusel, posteriormente se colocan dentro del equipo de digestión, a una temperatura de 200 °C durante 1 hora aproximadamente. (Figura 4.6).

Figura 4.6 Equipo de digestión.

Transcurrido el tiempo se saca el porta muestra o carrusel, hasta lograr que esté a temperatura ambiente, para traspasar cada una de las soluciones contenidas en los cilindros del porta muestra a balones de 50 ml identificados, luego se prepara ácido nítrico para completar la solución de cada balón hasta la línea de aforo, posteriormente se deja reposar por 24 horas con la finalidad de que los sólidos se depositen en el fondo de cada balón.

Una vez que han durado 24 horas en reposo las soluciones, se procede a leer el % de Cobre (Cu), Hierro (Fe), Zinc (Zn) y Plomo (Pb) en el aparato de espectrometría de absorción atómica.

Luego se traspasan 30 ml con la ayuda de un cilindro graduado de cada solución a otros balones limpios e identificados con el número de muestra, luego cada solución se mezcla con 20 ml de buffer y 5 ml de cianuro de sodio, para posteriormente ser colocados en el agitador mecánico durante 10 ó 15 minutos. Esto se realiza únicamente para leer el Oro contenido en cada muestra a través del aparato de espectrometría de absorción atómica (Figura 4.7).

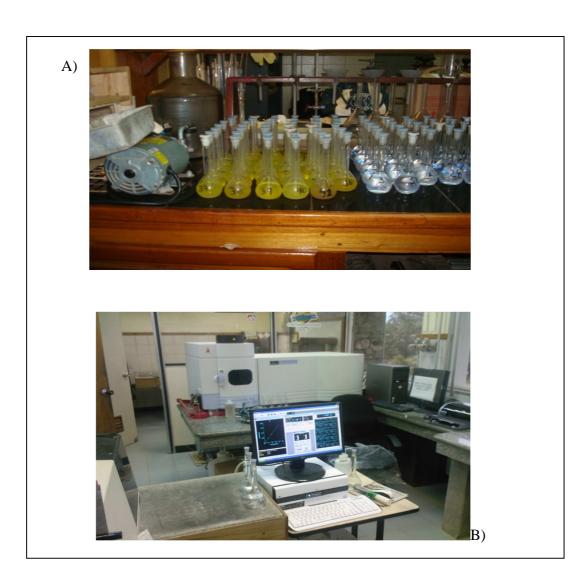


Figura 4.7 A) Soluciones contenidas en los balones. B) Equipo de Espectrometría de Absorción Atómica.

4.4.3.2 Resultados obtenidos de laboratorio: una vez realizados todos los análisis químicos, fueron entregados los resultados al Departamento de Geología de Exploración por parte del laboratorio industrial de C.V.G MINERVEN. Respectivamente, en el Apéndice A se pueden observar las tablas de los resultados del análisis químico.

4.4.4 Trabajo de oficina

4.4.4.1 Validación de resultados: los datos vaciados en los distintos programas tales como Surfer 8, AutoCad 2007 y el programa estadístico SPSS versión 15; deben de ser validados para no crear errores que puedan posteriormente dar falsos valores o pronósticos, ocasionando fallas en la elaboración e interpretación de mapas y gráficas.

4.4.4.2 Elaboración de los mapas geoquímicos: para la elaboración de estos mapa se utilizó el programa Excel 2007, creando inicialmente una tabla con los resultados obtenidos en el laboratorio industrial de C.V.G MINERVEN y sus respectivas coordenadas de los elementos analizados tales como el Oro, Cobre, Hierro, Zinc y Plomo, luego se empleó el programa Surfer 8 para realizar los respectivos mapas geoquímicos.

4.4.4.3 Integración del mapa geoquímico con el geológico: se basó principalmente en analizar e interpretar los resultados obtenidos de los mapas geoquímicos relacionándolos con la geología de la zona.

4.4.4.4 Obtención de gráficas geoestadística: a través del programa SPSS, versión 15, se elaboraron las gráficas de geoestadística. Se determinó el valor promedio de fondo, valor umbral y valores anómalos, usando la aplicación del programa SPSS de diagrama de cajas. También se usó el diagrama de dispersión para establecer las relaciones del elemento Au, con los elementos Cu, Fe, Zn y Pb utilizando todos los resultados obtenidos de los elementos químicos analizados en el laboratorio industrial de la empresa.

4.4.4.5 Análisis e interpretación de resultados y mapas: se basó principalmente en analizar e interpretar de forma detallada todos los resultados obtenidos y los mapas realizados, para luego realizar propuestas de ubicación de sondeos exploratorios y trincheras geológicas.

CAPÍTULO V

ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS

Después de haber realizado todas las actividades correspondientes a cada uno de los procesos englobados en la metodología de este proyecto, los cuales son necesarios para cumplir con los objetivos del mismo, se procedió a analizar e interpretar los resultados obtenidos para definir las características geológicas, geoquímicas y geomorfológicas de la zona de estudio.

Durante el trabajo de campo desarrollado en el área, se pudo observar que los suelos se caracterizan por presentar una coloración predominantemente marrón rojiza a marrón oscuro producto de la alteración de minerales ferromagnesianos, de textura arcillo-arenoso, con presencia de cuarzo diseminado, pisolitas de hierro y costras ferruginosas; acompañado de rocas de composición máfica de afinidad tholeítica de la Formación El Callao. Geomorfológicamente el área se caracteriza por una superficie "casi plana" a suavemente inclinada, bordeada por quebradas de régimen intermitente y actividad erosiva leve debido a que la zona posee una cobertura vegetal densa.

5.1 Muestreo de la zona de estudio

El estudio se llevó a cabo sobre una red de picas levantadas topográficamente con una línea base (EJE CENTRAL) con dirección NE-SO de 900 metros de largo y 10 líneas transversales (PICAS) con dirección NO-SE. En el anexo 1 se puede observar el mapa topográfico con ubicación de muestras de la zona.

5.2 Mapa geológico

Según TECMIN, C.A. (1989), la concesión se encuentra ubicada geológicamente dentro del cinturón de rocas verdes de edad Proterozoica perteneciente a la Formación El Callao, representado litológicamente por: Lavas básicas anfibolitizadas, almohadilladas, localmente de afinidad tholeítica; basandesitas, esquistos talco-carbonáticos y chert ferruginoso; diferentes sistemas de fallas de tipo "shear zone" (zona de cizalla) con dirección NE-SO.

También se observan aluviones constituidos de arenas, arcillas, limos, gravas de cuarzo y fragmentos de roca meteorizada. En el anexo 2 se observa el mapa geológico estructural de la zona.

5.3 Estudios geoquímicos

La prospección geoquímica (muestras de suelo) se realizó fundamentalmente para el oro, pero se consideró la conveniencia de usar otros elementos trazas o (elementos exploradores) como el Cu-Fe-Zn-Pb, por la asociación estrecha que tienen con el mineral buscado; la distribución de estos elementos en el área puede ser visualizada en el Apéndice B.

Los resultados de las 490 muestras analizadas en el laboratorio industrial de C.V.G Minerven por el método de absorción atómica fueron reflejados en una base de datos a la cual se aplicaron distintas metodologías estadísticas (diagrama de caja y diagrama de dispersión) para establecer los puntos de corte (valor de fondo, valor umbral y valor anómalo), y así generar la asociación del elemento Au con el Cu-Fe-Zn-Pb.

5.4 Resultados de análisis estadístico

El estudio geoestadístico de las muestras de suelo en la zona I de Chocó 3, se realizó a partir de un diagrama de caja utilizando el software SPSS 15.0, para la creación del modelo geológico a través de los mapas de anomalías, determinándose la dirección de mineralización.

5.4.1 Elemento Oro

Para la evaluación estadística del elemento oro, se utilizaron los valores emitido por el laboratorio de C.V.G. MINERVEN, para un total de 490 muestras de suelo de los cuales para el análisis estadístico se utilizaron 372 de los mismos, por considerar que estos son más aproximados a la realidad y por ende poseen menor grado de error, ya sea por parte del muestreo o manipulación en el laboratorio. En el anexo 3 se visualiza la distribución de valores anómalos para el Au.

En la tabla 5.1 se observa los valores estadísticos descriptivos del elemento Au generados a partir de una base de datos utilizando el software SPSS versión 15.0.

Tabla 5.1 Estadísticos descriptivos para el elemento Au en ppb.

					Valor
		Valor de	Valor	Valor	significativ
	N	fondo	Umbral	Anómalo	О
Au	372	2500.00	4000.00	4000 - 11000	>11000
N válido (según lista)	372				

Igualmente los valores anómalos se visualizan en el diagrama de caja de la figura 5.1.

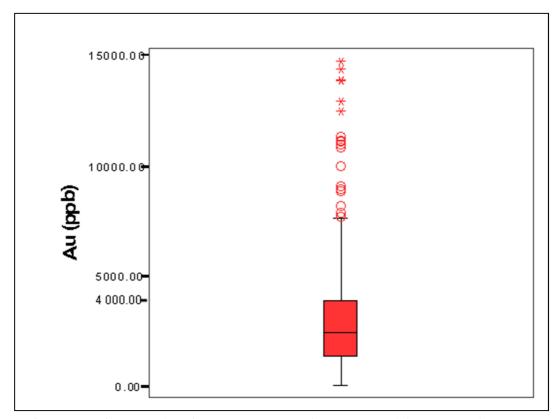


Figura 5.1 Diagrama de caja para representar las muestras del Au con valores por encima del valor umbral.

5.4.2 Elemento Cobre

En la tabla 5.2 se observa los valores estadísticos descriptivos para este elemento.

					Valor
		Valor de	Valor	Valor	significati
	N	fondo	Umbral	Anómalo	vo
Cu	490	110000.00	130000.00	130000 - 200000	>200000
N válido (según lista)	490				

Tabla 5.2 Estadísticos descriptivos para el elemento Cu en ppb.

Igualmente los valores anómalos se visualizan en el diagrama de caja de la figura 5.2.

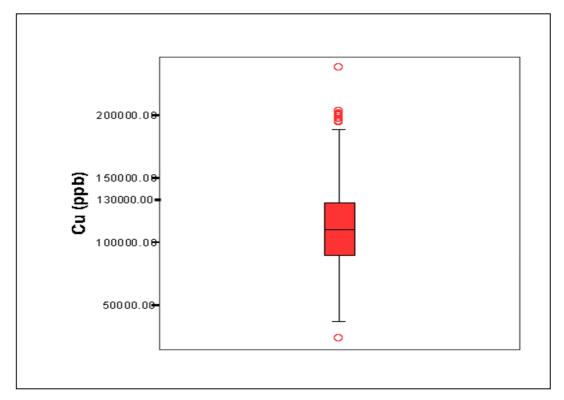


Figura 5.2 Diagrama de caja para representar las muestras del Cu con valores por encima del valor umbral.

5.4.3 Elemento Hierro

En la tabla 5.3 se observa los valores estadísticos descriptivos para este elemento.

Tabla 5.3 Estadísticos descriptivos para el elemento Fe en ppm.

					Valor
		Valor de	Valor	Valor	significati
	N	fondo	Umbral	Anómalo	vo
Fe	490	120000.00	150000.00	150000 - 200000	>200000
N válido (según lista)	490				

Igualmente los valores anómalos se visualizan en el diagrama de caja de la figura 5.3.

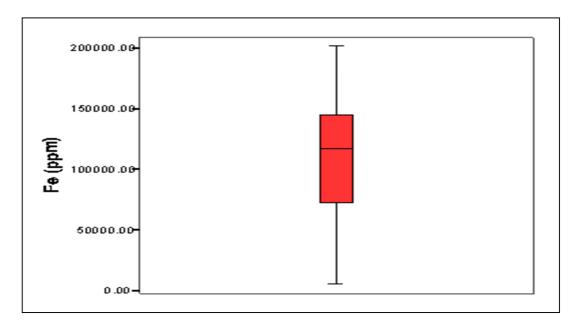


Figura 5.3 Diagrama de caja para representar las muestras del Fe con valores por encima del valor umbral.

5.4.4 Elemento Zinc

En la tabla 5.4 se observa los valores estadísticos descriptivos para este elemento.

Tabla 5.4 Estadísticos descriptivos para el elemento Zn en ppb.

					Valor
		Valor de	Valor	Valor	significati
	N	fondo	Umbral	Anómalo	vo
Zn	490	70000.00	80000.00	80000 - 140000	>140000
N válido (según lista)	490				

Igualmente los valores anómalos se visualizan en el diagrama de caja de la figura 5.4.

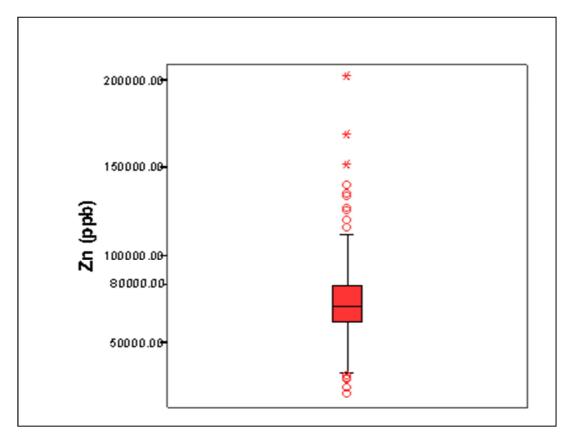


Figura 5.4 Diagrama de caja para representar las muestras del Zn con valores por encima del valor umbral.

5.4.5 Elemento Plomo

En la tabla 5.5 se observa los valores estadísticos descriptivos para este elemento.

					Valor
		Valor de	Valor	Valor	significati
	N	fondo	Umbral	Anómalo	vo
Pb	490	25000.00	35000.00	35000 - 75000	>75000
N válido (según	490				
lista)	.,,0				

Tabla 5.5 Estadísticos descriptivos para el elemento Pb en ppb.

Igualmente los valores anómalos se visualizan en el diagrama de caja de la figura 5.5.

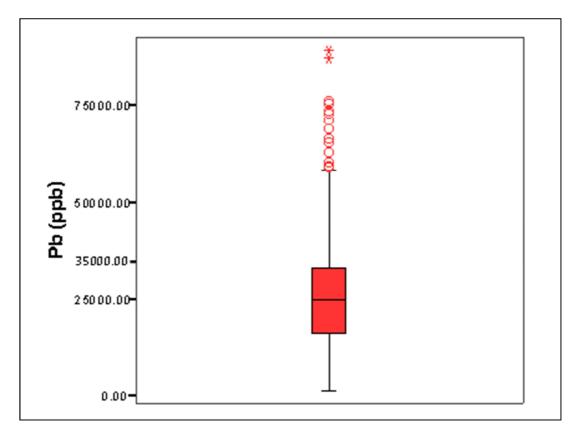


Figura 5.5 Diagrama de caja para representar las muestras del Pb con valores por encima del valor umbral.

5.5 Correlación e interpretación geoquímica entre elementos

A partir de los valores obtenidos para cada uno de los elementos trazas (Cu, Fe, Zn, Pb) se determina que estos guardan relación directa con el elemento oro (Au), permitiendo así identificar dos zonas anómalas, dichas anomalías son enumeradas como A I y A II (anexos 4, 5, 6, 7).

Las anomalías A I y A II, presentan valores de oro entre 4 y 11 gramos por tonelada (g/t) ó 4000.00 – 11000.00 partes por billón (ppb) con tendencia estructural NO – SE, ubicándose la A I hacia el SE de la zona de estudio, entre las coordenadas mE 624100 – mE 624500, mN 809100 – mN 809600 abarcando un área de 20 hectáreas aproximadamente, siendo ésta la de mayor amplitud y a su vez asociándose con los elementos trazas (Cu, Fe, Zn, Pb); por otra parte, la A II se encuentra ubicada hacia el NO de la zona de estudio, entre las coordenadas mE 623400 – mE 623700, mN 809400 – mN 809500 abarcando un área de 8 hectáreas aproximadamente, asociada con los elementos (Cu, Zn y pequeñas proporciones de Pb).

La presencia de valores altos dentro de las áreas definidas como anomalías para cada elemento, evidencian presencia de sulfuros, posiblemente calcopirita CuFeS₂, pirita FeS₂ galena PbS y esfalerita ZnS depósitos típicos de origen mesotermales (formados a profundidades considerables en un rango de temperaturas de 200 a 300°C) característicos de la Formación El Callao.

Cabe destacar que los valores anómalos de oro (Au) acompañado del elemento plomo (Pb) es de gran importancia ya que es uno de los elementos menos móviles, lo que permite inferir que la anomalía se encuentra in-situ y a su vez dominada por un sistema de fallas de tipo "shear zone" (zona de cizalla) con dirección NE – SO (anexo 2).

De igual forma para conocer la asociación del elemento oro con los elementos Cu, Fe, Zn y Pb encontrados en la zona de estudio, se aplicó a los datos el método de diagrama de dispersión, (apéndice C), obteniendo como resultado una nube de puntos alargada y ascendente, generando una relación lineal positiva, comprobando así que existe afinidad entre cada uno de los elementos y posiblemente están vinculados con una estructura mineralizada.

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

Después de haber analizado e interpretado toda la información sobre el estudio geológico-geoquímico para determinar anomalías auríferas en la zona I de la concesión minera Chocó 3, se generan las siguientes conclusiones:

Se determinó que el mineral oro (Au), presenta un comportamiento anómalo significativo, ya que se logró establecer un valor anómalo máximo de 11000.00 ppb para el elemento Au, y un valor de fondo de 2500.00 ppb, siendo este representativo en comparación al valor de fondo o background regional, el cual se encuentra entre 30-40 ppb, teniendo una relación entre el valor de fondo regional y el valor de fondo local de 6250 %, indicando que la zona es rentable para labores de explotación.

A partir de los resultados obtenidos en el laboratorio se identificaron dos zonas anómalas, enumeradas como A I y AII, presentando valores entre 4 y 11 gramos por toneladas (g/t) ó 4000.00-11000.00 partes por billón (ppb), con una tendencia estructural NO-SE, siendo la A I la de mayor amplitud en la zona de estudio, ubicada entre las coordenadas mE 624100 – mE 624500, mN 809100 – mN 809600.

El área se caracteriza por una superficie "casi plana" a suavemente inclinada, con cotas que oscilan entre 225 m.s.n.m alturas máximas y las mínimas 190 m.s.n.m, manteniéndose un equilibrio morfogenético con procesos erosivos leves debido a la excelente protección que ejerce la cobertura vegetal boscosa. Por tal motivo, las anomalías presentes en la zona posiblemente están relacionadas con una estructura mineralizada y no son producto de contaminación.

Los mapas geoquímicos permiten inferir que la presencia de valores anómalos de oro (Au) acompañado del elemento plomo es de gran importancia ya que es un elemento poco móvil asociado a fallas y zonas de cizallas con tendencia estructural NE – SO presentes en las zona de estudio, emplazándose a través de éstas fluidos hidrotermales, generando así anomalías significantes (in situ), reflejando en superficie una posible mineralización a profundidad. A su vez, la presencia de valores altos dentro de las áreas definidas como anomalías para cada elemento traza, evidencia presencia de sulfuros, posiblemente calcopirita CuFeS₂, pirita FeS₂, esfalerita ZnS y galena PbS, depósitos típicos de origen mesotermales característicos de la Formación El Callao.

Recomendaciones

Tomando en cuenta los resultados obtenidos y las características estructurales de la zona, se recomienda al personal de Geología de Exploración de la Corporación Venezolana de Guayana (CVG Minerven) encargado del proyecto de la zona I de Chocó 3, continuar con la actividad exploratoria a un mayor nivel de detalle, realizando sondeos exploratorios que permitan determinar si estas anomalías son continuas tanto en profundidad como lateralmente.

Realizar análisis químicos más especializados que permitan establecer los elementos asociados directamente con la mineralización presente en el área, de manera que permitan determinar el tipo de yacimiento y a su vez el mejor método para recuperación del oro.

Las anomalías están estrechamente relacionadas; por lo tanto, es conveniente estudiarlas conjuntamente.

REFERENCIAS

Corporación Venezolana de Guayana (C.V.G) Técnica Minera, C.A. TECMIN. (1989) **PROYECTO 060 DISTRITO AURÍFERO DE EL CALLAO. RESULTADO DE LA PROSPECCIONES.** Informe interno para C.V.G Minerven, Puerto Ordaz-Estado Bolívar, Venezuela, pp 24-44.

Corporación Venezolana de Guayana (C.V.G) Técnica Minera, C.A. TECMIN. (1993) **PROYECTO EXPLORATORIO PARCELA CHOCÓ 3.** Informe interno para C.V.G Minerven, Puerto Ordaz-Estado Bolívar, Venezuela, pp 10-21.

Foster, R. (1992) THE GEOLOGY GEOCHEMISTRY AND GENESIS OF GOLD DEPOSITS, pp 389-416.

Hurtado de Barrera, Jackeline. (2001) **METODOLOGÍA DE LA INVESTIGACIÓN.** Editorial Magisterio, Bogotá.

Mendoza, Vicente. (2000) **EVOLUCIÓN GEOTECTÓNICA Y RECURSOS MINERALES DEL ESCUDO DE GUAYANA EN VENEZUELA** (Y SU RELACIÓN CON EL ESCUDO SUDAMERICANO). Editorial Instituto Geográfico de Venezuela Simón Bolívar, pp 55-78.

Mendoza, Vicente. (2005) **GEOLOGÍA DE VENEZUELA ESCUDO DE GUAYANA, ANDES VENEZOLANOS Y SISTEMA MONTAÑOSO DEL CARIBE.** Editorial Instituto Geográfico de Venezuela Simón Bolívar, Ciudad Bolívar. Tomo I, pp 21- 159.

Menéndez, Alfredo. (1968) **REVISIÓN DE LA ESTRATIGRAFÍA DE LA PROVINCIA DE PASTORA SEGÚN EL ESTUDIO DE LA REGIÓN DE GUASIPATI, GUAYANA VENEZOLANA.** Ministerio de Minas e Hidrocarburos, Dirección de Geología, Caracas – Venezuela. Volumen X, pp 309 – 338.

Morales, A. (1985) **TÉCNICAS Y MÉTODOS UTILIZADOS EN PROSPECCIÓN GEOQUÍMICA Y GEOFÍSICA.** Manual, 17.

Rodríguez, S. (1986) **RECURSOS MINERALES DE VENEZUELA.** Boletín del Ministerio de Energía y Minas, Caracas, 215.

APÉNDICES

APENDICE A

Resultados de los análisis químicos realizados a las muestras de suelo recolectadas en la zona I de Chocó 3

Tabla A.1 Resultados de análisis químico de la progresiva P0+000 Chocó 3 zona I.

CORPORACION VENEZOIANA DE GUAYANA	DIV	ISIÓN DE EXPLO	cvgMir	nerven		
DIVISION DE LABORATORIO INDUSTRIAL					10/02	/2010
DPTO DE INVESTIGACION Y DESARROLLO Resultados análisis o			da muastras	CHOCO 3 7		EN 01
MUESTRA	Au g/t	ppb Au	ppb Cu	ppm Fe *	ppb Pb	ppb Zn
M0 P0+000 -						
NW	< 0,017	< 17	82600	99900	1300	72500
M1 P0+000 -						
NW	6,867	6867	103400	97400	15500	71800
M2 P0+000 -						
NW	2,750	2750	66200	66520	9400	65700
M3 P0+000 -						
NW	1,383	1383	119500	121260	11300	72300

M4 P0+000 -						
NW	< 0,017	< 17	77800	88800	11300	60800
M5 P0+000 -						
NW	7,300	7300	104000	164860	15200	66800
M6 P0+000 -						
NW	0,800	800	104700	144400	14500	60500
M7 P0+000 -						
NW	3,733	3733	98100	131180	6100	75300
M8 P0+000 -						
NW	3,917	3917	73000	108940	8700	63700
M9 P0+000 -						
NW	4,700	4700	111500	166500	14100	67600
M10 P0+000 -						
NW	0,967	967	80100	128960	10900	61600
M11 P0+000 -						
NW	6,250	6250	123100	154620	15700	53900
M12 P0+000 -						
NW	1,517	1517	89200	142520	13400	53700
M13 P0+000 -						
NW	5,333	5333	142700	122960	18700	87900
M14 P0+000 -						
NW	< 0,017	< 17	89200	158120	9900	64500
M15 P0+000 -						
NW	3,717	3717	87200	107000	15100	64500
M16 P0+000 -						
NW	< 0,017	< 17	93300	154080	23100	125100
M17 P0+000 -						
NW	3,100	3100	100900	161540	11700	74500

M18 P0+000 -						
NW	0,233	233	100800	165480	19100	134300
M19 P0+000 -						
NW	4,233	4233	114000	180260	26200	75600
M20 P0+000 -						
NW	< 0,017	< 17	84000	153120	19800	82200
M21 P0+000 -						
NW	6,317	6317	90500	114180	25900	56400
M22 P0+000 -						
NW	< 0,017	< 17	71900	103900	8600	49600
M23 P0+000 -						
NW	3,483	3483	93900	68500	16400	61600
M24 P0+000 -						
NW	< 0,017	< 17	69400	90700	3900	65000
M1 P0+000 -						
SE	0,967	967	98500	94820	24600	82700
M2 P0+000 -						
SE	3,500	3500	91000	109280	34000	66600
M3 P0+000 -						
SE	0,467	467	55000	84800	25000	72700
M4 P0+000 -						
SE	3,367	3367	70900	67700	1800	51300
M5 P0+000 -						
SE	4,400	4400	158100	93180	10700	63800
M6 P0+000 -						
SE	4,267	4267	113600	145180	2500	96600
M7 P0+000 -						
SE	0,900	900	89800	82700	17100	61300

M8 P0+000 -						
SE	4,183	4183	109600	127700	1800	79300
M9 P0+000 -						
SE	4,450	4450	125500	100800	26000	59700
M10 P0+000 -						
SE	4,133	4133	128700	128660	1400	84600
M11 P0+000 -						
SE	2,017	2017	103900	80700	75100	106600
M12 P0+000 -						
SE	3,550	3550	118400	124900	2100	73400
M13 P0+000 -						
SE	1,450	1450	93800	102480	52200	85100
M14 P0+000 -						
SE	4,833	4833	136000	129680	7500	103000
M15 P0+000 -						
SE	0,883	883	83800	124280	30000	63600
M16 P0+000 -						
SE	3,200	3200	112500	179940	2900	51000
M17 P0+000 -						
SE	3,167	3167	78900	63560	10600	43900
M18 P0+000 -						
SE	3,433	3433	51000	96000	3600	49500
M19 P0+000 -						
SE	14,383	14383	79300	59060	29000	57600
M20 P0+000 -						
SE	4,750	4750	102400	145500	4800	95600
M21 P0+000 -						
SE	3,167	3167	125900	93080	32000	85900

M22 P0+000 -						
SE	2,150	2150	161100	126640	5300	119400
M23 P0+000 -						
SE	3,283	3283	147800	89620	4000	75500
M24 P0+000 -						
SE	4,567	4567	150000	118560	2600	75100

Tabla A.2 Resultados de análisis químico de la progresiva P0+100 Chocó 3 zona I.

CORPORACION VENEZOLANA DE GUAYANA	DIV	ISIÓN DE EXPLO	cvgMir	nerven		
DIVISION DE	LABORA	TORIO				
INDI	USTRIAL				10/02	/2010
DPTO DE IN	VESTIGA	CION Y				
DESA	RROLLO)			ORDI	EN 02
	Resultade	os análisis	de muestra	s CHOCO 3	ZONA I	
MUESTRA	Au g/t	ppb Au	ppb Cu	ppm Fe	ppb Pb	ppb Zn
M0 P0+100 -						
NW	< 0,017	< 17	237300	128880	17300	150900
M1 P0+100 -						
NW	5,117	5117	106000	95900	9800	75200
M2 P0+100 -						
NW	< 0,017	< 17	110000	173520	19900	65000
M3 P0+100 -						
NW	3,150	3150	130200	133540	22300	72900
M4 P0+100 -						
NW	< 0,017	< 17	109800	200080	20300	55800
M5 P0+100 -						
NW	5,867	5867	115800	106360	13200	79900
M6 P0+100 -						
NW	< 0,017	< 17	110900	201300	25000	64300
M7 P0+100 -						
NW	0,250	250	124400	115740	17700	84700
M8 P0+100 -	< 0,017	< 17	116800	164040	19000	67300

NW						
M9 P0+100 -						
NW	2,067	2067	161800	168500	27700	79400
M10 P0+100 -						
NW	< 0,017	< 17	77100	120740	10900	85900
M11 P0+100 -						
NW	3,250	3250	117100	128220	6700	102400
M12 P0+100 -						
NW	0,433	433	48500	41760	9900	49600
M13 P0+100 -						
NW	1,467	1467	124300	169180	19500	69000
M14 P0+100 -						
NW	< 0,017	< 17	66600	111480	6500	35700
M15 P0+100 -						
NW	3,350	3350	130800	158020	25600	93300
M16 P0+100 -						
NW	< 0,017	< 17	67500	147980	8000	41300
M17 P0+100 -						
NW	6,300	6300	108400	99560	21900	83000
M18 P0+100 -						
NW	< 0,017	< 17	98200	156480	11800	62200
M19 P0+100 -						
NW	2,700	2700	96400	196380	10300	75300
M20 P0+100 -						
NW	< 0,017	< 17	107300	149840	1900	67700
M21 P0+100 -						
NW	9,050	9050	94500	149620	35100	64000
M22 P0+100 -	< 0,017	< 17	103500	145100	6700	67400

NW						
M23 P0+100 -						
NW	6,883	6883	149200	183540	30300	67700
M24 P0+100 -						
NW	< 0,017	< 17	92100	121660	7700	70200
M1 P0+100 -						
SE	14,683	14683	94100	68040	24200	64100
M2 P0+100 -						
SE	2,200	2200	63600	86760	16200	52900
M3 P0+100 -						
SE	3,900	3900	42800	45960	25700	41700
M4 P0+100 -						
SE	3,050	3050	65600	110500	43700	54300
M5 P0+100 -						
SE	1,100	1100	59300	59660	25700	43300
M6 P0+100 -						
SE	5,100	5100	125600	116140	27800	76000
M7 P0+100 -						
SE	3,133	3133	92600	82860	30400	70800
M8 P0+100 -						
SE	3,333	3333	136600	149320	30100	70600
M9 P0+100 -						
SE	2,000	2000	54900	41020	51700	39700
M10 P0+100 -						
SE	3,283	3283	70600	99660	45800	58200
M11 P0+100 -						
SE	0,550	550	65600	71060	10600	50200
M12 P0+100 -	3,683	3683	44600	53380	47300	38800

SE						
M13 P0+100 -						
SE	1,950	1950	76800	69480	8600	64400
M14 P0+100 -						
SE	4,050	4050	80500	99900	62800	80400
M15 P0+100 -						
SE	1,517	1517	53300	58560	10700	43500
M16 P0+100 -						
SE	3,717	3717	42200	56500	33100	28500
M17 P0+100 -						
SE	2,083	2083	82900	87000	10700	51400
M18 P0+100 -						
SE	3,650	3650	85200	106960	73400	63600
M19 P0+100 -						
SE	2,867	2867	95600	98440	14300	68600
M20 P0+100 -						
SE	2,350	2350	89900	88000	15600	68800
M21 P0+100 -						
SE	1,883	1883	122100	98960	58000	47700
M22 P0+100 -						
SE	3,867	3867	124800	111060	17500	67600
M23 P0+100 -						
SE	3,917	3917	125100	107060	58000	70900
M24 P0+100 -						
SE	3,983	3983	136500	166340	50600	106700

Tabla A.3 Resultados de análisis químico de la progresiva P0+200 Chocó 3 zona I.

CORPORACION VENEZOLANA DE GUAYANA	DIV	ISIÓN DE EXPLO	cvgMir	erven		
DIVISION DE LABORATORIO						
IND	USTRIAL				17/02	/2010
DPTO DE IN	VESTIGA	CION Y				
DESA	ARROLLO)			ORDI	EN 03
	Resultado	s análisis o	de muestra	s CHOCO 3	ZONA I	
MUESTRA	Au g/t	ppb Au	ppb Cu	ppm Fe *	ppb Pb	ppb Zn
M0 P0+200 -						
NW	< 0,017	< 17	85200	158900	24100	71000
M1 P0+200 -						
NW	1,100	1100	59300	59660	25700	43300
M2 P0+200 -						
NW	< 0,017	< 17	84400	128680	19700	55400
M3 P0+200 -						
NW	< 0,017	< 17	94500	122900	2400	69900
M4 P0+200 -						
NW	< 0,017	< 17	75200	98180	16100	59000
M5 P0+200 -						
NW	< 0,017	< 17	126700	141560	25000	67900
M6 P0+200 -						
NW	< 0,017	< 17	87800	102920	20300	74600
M7 P0+200 -						
NW	< 0,017	< 17	237300	128880	17300	150900
M8 P0+200 -	2,067	2067	81000	97260	16300	63400

NW						
M9 P0+200 -						
NW	2,000	2000	127800	109260	22100	82300
M10 P0+200 -						
NW	0,017	< 17	110200	105960	20500	65500
M11 P0+200 -						
NW	< 0,017	< 17	59800	50200	< 10000	30000
M12 P0+200 -						
NW	0,900	900	98600	159760	20800	67800
M13 P0+200 -						
NW	0,850	850	59900	23060	18900	53800
M14 P0+200 -						
NW	0,350	350	98400	139060	16500	81800
M15 P0+200 -						
NW	0,950	950	112100	137800	58700	76600
M16 P0+200 -						
NW	< 0,017	< 17	96400	142040	15100	65400
M17 P0+200 -						
NW	0,700	700	152000	185980	27600	79200
M18 P0+200 -						
NW	< 0,017	< 17	86700	129080	17100	49800
M19 P0+200 -						
NW	< 0,017	< 17	126700	141560	25000	67900
M20 P0+200 -						
NW	< 0,017	< 17	85900	126180	13200	74600
M21 P0+200 -						
NW	< 0,017	< 17	82600	99900	1300	72500
M22 P0+200 -	< 0,017	< 17	109800	106420	11000	64500

NW						
M23 P0+200 -						
NW	< 0,017	< 17	98200	156480	11800	62200
M24 P0+200 -						
NW	< 0,017	< 17	106200	123040	11200	63700
M1 P0+200 -						
SE	1,450	1450	90400	172700	39400	39200
M2 P0+200 -						
SE	3,017	3017	162400	114680	4700	139500
M3 P0+200 -						
SE	2,633	2633	145900	164580	59000	76500
M4 P0+200 -						
SE	3,600	3600	126000	112400	31100	100700
M5 P0+200 -						
SE	2,233	2233	146800	131560	28200	59800
M6 P0+200 -						
SE	7,017	7017	132800	136020	1500	97200
M7 P0+200 -						
SE	2,667	2667	92000	118860	20000	70100
M8 P0+200 -						
SE	2,067	2067	150000	126820	23700	109700
M9 P0+200 -						
SE	2,133	2133	116900	112700	22700	91200
M10 P0+200 -						
SE	5,717	5717	115200	126860	21000	81100
M11 P0+200 -						
SE	3,283	3283	147800	89620	4000	75500
M12 P0+200 -	5,450	5450	112300	108300	26000	86000

SE						
M13 P0+200 -						
SE	3,550	3550	118400	124900	2100	73400
M14 P0+200 -						
SE	4,467	4467	93000	88360	42300	70400
M15 P0+200 -						
SE	5,017	5017	151900	143220	39400	76600
M16 P0+200 -						
SE	4,183	4183	104800	107160	25600	71100
M17 P0+200 -						
SE	3,383	3383	174500	166340	10600	83500
M18 P0+200 -						
SE	11,133	11133	81000	65900	40200	55400
M19 P0+200 -						
SE	6,750	6750	144900	110870	68940	76500
M20 P0+200 -						
SE	5,833	5833	122300	150780	88900	119400
M21 P0+200 -						
SE	4,103	4103	117500	125280	22000	65000
M22 P0+200 -						
SE	6,567	6567	87200	91000	21300	67100
M23 P0+200 -						
SE	3,383	3383	174500	166340	10600	83500
M24 P0+200 -						
SE	2,900	2900	96000	154380	54100	87100

Tabla A.4 Resultados de análisis químico de la progresiva P0+300 Chocó 3 zona I.

VENEZOIANA DE GUAYANA	DIV	ISIÓN DE EXPLO	cvgMii	nerven		
DIVISION D	E LABOR	ATORIO				l
IND	USTRIAL	,			17/02	/2010
DPTO DE IN	NVESTIGA	ACION Y				
DES	ARROLLO)			ORD	EN 04
	Resultad	os análisis	de muestra	as CHOCO 3	ZONA I	
MUESTRA	Au g/t	ppb Au	ppb Cu	ppm Fe *	ppb Pb	ppb Zn
M0 P0+300 -						
NW	0,850	850	98800	128360	25000	47300
M1 P0+300 -						
NW	< 0,017	< 17	106500	93220	13100	33000
M2 P0+300 -						
NW	0,150	150	88700	100960	24200	84700
M3 P0+300 -						
NW	0,983	983	188800	140700	27600	96000
M4 P0+300 -						
NW	0,533	533	77100	98720	20900	73500
M5 P0+300 -						
NW	0,767	767	198200	147880	43200	106600
M6 P0+300 -						
NW	< 0,017	< 17	90100	96880	18200	70700
M7 P0+300 -						
NW	3,500	3500	178800	199400	48700	94400
M8 P0+300 -	< 0,017	< 17	95600	100180	25900	81500

NW						
M9 P0+300 -						
NW	0,650	650	135400	187340	31100	71400
M10 P0+300						
-NW	< 0,017	< 17	96900	80220	14500	77100
M11 P0+300						
-NW	1,917	1917	120900	160020	35100	81500
M12 P0+300						
-NW	< 0,017	< 17	110200	118120	22700	68000
M13 P0+300						
-NW	0,417	417	139500	187920	33600	80000
M14 P0+300						
-NW	3,450	3450	117400	105780	23600	78300
M15 P0+300						
-NW	1,700	1700	64300	70460	26900	47100
M16 P0+300						
-NW	0,150	150	105200	100740	19500	76200
M17 P0+300						
-NW	1,783	1783	123300	131460	18000	63700
M18 P0+300						
-NW	< 0,017	< 17	113600	163240	20300	66600
M19 P0+300						
-NW	< 0,017	< 17	91900	140600	19900	39900
M20 P0+300						
-NW	< 0,017	< 17	105500	158080	22400	97300
M21 P0+300						
-NW	1,600	1600	108800	175860	23900	59900
M22 P0+300	< 0,017	< 17	105100	168140	28900	110000

-NW						
M23 P0+300						
-NW	1,433	1433	107300	161100	19300	76600
M24 P0+300						
-NW	< 0,017	< 17	94400	198440	32800	100200
M1 P0+300 -						
SE	13,833	13833	196800	142160	43000	77000
M2 P0+300 -						
SE	7,083	7083	144800	175060	57200	99700
M3 P0+300 -						
SE	10,950	10950	182500	110700	25100	75700
M4 P0+300 -						
SE	4,400	4400	199800	128960	26500	99400
M5 P0+300 -						
SE	6,700	6700	151900	122260	12500	78400
M6 P0+300 -						
SE	3,967	3967	178500	124280	32500	83500
M7 P0+300 -						
SE	2,367	2367	203400	148580	32700	106000
M8 P0+300 -						
SE	1,917	1917	171600	114880	31200	87700
M9 P0+300 -						
SE	1,117	1117	161900	149580	25300	81700
M10 P0+300						
-SE	1,867	1867	201000	116140	13900	94900
M11 P0+300						
-SE	4,417	4417	143700	146040	30300	78700
M12 P0+300	2,400	2400	149000	126700	59900	105100

-SE						
M13 P0+300						
-SE	1,217	1217	181500	135160	25600	101600
M14 P0+300						
-SE	4,800	4800	186000	181760	10000	102200
M15 P0+300						
-SE	2,200	2200	182400	144840	24700	87100
M16 P0+300						
-SE	1,467	1467	203400	142240	32900	168500
M17 P0+300						
-SE	2,100	2100	153900	148980	22500	97800
M18 P0+300						
-SE	5,017	5017	181000	144220	3600	111100
M19 P0+300						
-SE	3,667	3667	202800	179160	8400	101900
M20 P0+300						
-SE	4,017	4017	154800	177900	1900	72400
M21 P0+300						
-SE	7,317	7317	177200	176520	11800	87200
M22 P0+300						
-SE	2,950	2950	163200	168220	12000	97100
M23 P0+300						
-SE	12,467	12467	167500	200100	18700	95700
M24 P0+300						
-SE	2,300	2300	178300	199700	14200	103000

Tabla A.5 Resultados de análisis químico de la progresiva P0+400 Chocó 3 zona I.

CORPORACION VENEZOIANA DE GUAYANA	DIV	ISIÓN DE EXPLO	cvgMii	nerven		
DIVISION D	E LABOR	ATORIO				<u>'</u>
IND	USTRIAL	•			10/03	/2010
DPTO DE IN	VESTIGA	ACION Y				
DESA	ARROLLO)			ORDI	EN 05
	Resultad	os análisis	de muestra	s CHOCO 3	ZONA I	
MUESTRA	Au g/t	ppb Au	ppb Cu	ppm Fe *	ppb Pb	ppb Zn
M0 P0+400 -						
NW	2,183	2183	109900	48900	18100	56500
M1 P0+400 -						
NW	11,267	11267	130200	113080	37600	69400
M2 P0+400 -						
NW	1,583	1583	125500	85860	24200	84800
M3 P0+400 -						
NW	1,683	1683	139500	132340	16100	62800
M4 P0+400 -						
NW	2,200	2200	123200	85280	25100	68700
M5 P0+400 -						
NW	0,617	617	142600	132480	28100	66100
M6 P0+400 -						
NW	1,817	1817	108900	200580	30700	55300
M7 P0+400 -						
NW	1,800	1800	129300	194560	51000	53700
M8 P0+400 -	3,750	3750	85700	62500	7500	72300

NW						
M9 P0+400 -						
NW	0,550	550	116600	128780	36100	82300
M10 P0+400						
-NW	3,217	3217	120500	119620	26800	76300
M11 P0+400						
-NW	0,700	700	152000	185980	27600	79200
M12 P0+400						
-NW	2,383	2383	79200	140600	31600	51500
M13 P0+400						
-NW	0,250	250	110900	169500	30700	56400
M14 P0+400						
-NW	1,850	1850	104200	170540	12000	77900
M15 P0+400						
-NW	1,350	1350	114300	155680	39800	53800
M16 P0+400						
-NW	1,967	1967	84600	70400	25500	52700
M17 P0+400						
-NW	< 0,017	< 17	126700	141560	25000	67900
M18 P0+400						
-NW	2,767	2767	71200	7760	26400	63500
M19 P0+400						
-NW	2,467	2467	92300	116540	35300	59300
M20 P0+400						
-NW	0,850	850	59900	23060	18900	53800
M21 P0+400						
-NW	1,000	1000	98400	137160	20000	68500
M22 P0+400	2,817	2817	74500	45840	21500	54200

-NW						
M23 P0+400						
-NW	0,967	967	104800	141420	32500	72100
M24 P0+400						
-NW	4,233	4233	102300	96800	22000	64200
M1 P0+400 -						
SE	12,883	12883	181000	142020	45400	96000
M2 P0+400 -						
SE	6,817	6817	199200	129020	33200	105200
M3 P0+400 -						
SE	2,233	2233	146800	131560	28200	59800
M4 P0+400 -						
SE	2,033	2033	194700	128540	31100	85300
M5 P0+400 -						
SE	6,750	6750	147900	123240	23100	61200
M6 P0+400 -						
SE	2,600	2600	153000	121940	26200	82100
M7 P0+400 -						
SE	2,300	2300	195500	136720	31800	89300
M8 P0+400 -						
SE	3,283	3283	179900	136220	38800	105200
M9 P0+400 -						
SE	6,183	6183	175100	165120	29900	104200
M10 P0+400						
-SE	3,017	3017	174100	122160	30600	102200
M11 P0+400						
-SE	3,133	3133	201000	132380	39200	114800
M12 P0+400	2,783	2783	198200	126600	25200	106200

-SE						
M13 P0+400						
-SE	4,083	4083	200800	139820	53600	201900
M14 P0+400						
-SE	7,683	7683	157200	117800	21500	103700
M15 P0+400						
-SE	9,950	9950	185700	136500	16000	69200
M16 P0+400						
-SE	5,200	5200	143900	118740	66300	87200
M17 P0+400						
-SE	1,350	1350	124500	142420	20700	80100
M18 P0+400						
-SE	0,367	367	144900	140580	9900	74100
M19 P0+400						
-SE	1,100	1100	201900	111300	8600	71000
M20 P0+400						
-SE	7,417	7417	121700	190580	10800	101000
M21 P0+400						
-SE	6,867	6867	201700	163440	16100	105900
M22 P0+400						
-SE	3,367	3367	200200	174420	35000	101400
M23 P0+400						
-SE	14,350	14350	181800	132680	28700	106500
M24 P0+400						
-SE	5,383	5383	194500	165000	39400	100800

Tabla A.6 Resultados de análisis químico de la progresiva P0+500 Chocó 3 zona I.

VENEZOIANA DE GUAYANA	DIV	ISIÓN DE EXPLO	ÍA DE	cvgMinerven		
DIVISION D	E LABOR	ATORIO				
IND	USTRIAL	ı			10/03	/2010
DPTO DE IN	NVESTIGA	CION Y				
DES	ARROLLO)			ORDI	EN 06
	Resultad	os análisis	de muestra	s CHOCO 3	ZONA I	
MUESTRA	Au g/t	ppb Au	ppb Cu	ppm Fe *	ppb Pb	ppb Zn
M0 P0+500 -						
NW	< 0,017	< 17	96800	75040	7500	51100
M1 P0+500 -						
NW	< 0,017	< 17	111500	38200	12600	52800
M2 P0+500 -						
NW	0,067	67	142700	79680	23400	93800
M3 P0+500 -						
NW	< 0,017	< 17	102600	80499	17800	69700
M4 P0+500 -						
NW	0,667	667	115900	57420	4700	79600
M5 P0+500 -						
NW	< 0,017	< 17	118700	100266	27800	73500
M6 P0+500 -						
NW	< 0,017	< 17	104400	72280	7100	81700
M7 P0+500 -						
NW	< 0,017	< 17	129200	117899	35700	77800
M8 P0+500 -						
NW	< 0,017	< 17	39900	50400	18600	61900

M9 P0+500 -						
NW	< 0,017	< 17	137900	63666	20300	101100
M10 P0+500						
-NW	< 0,017	< 17	126200	107780	2900	66900
M11 P0+500						
-NW	< 0,017	< 17	110900	42100	27700	68000
M12 P0+500						
-NW	< 0,017	< 17	100200	127760	8800	69700
M13 P0+500						
-NW	< 0,017	< 17	104500	48933	24600	60700
M14 P0+500						
-NW	< 0,017	< 17	94500	122900	2400	69900
M15 P0+500						
-NW	< 0,017	< 17	129000	70033	25800	65400
M16 P0+500						
-NW	< 0,017	< 17	102200	132120	1600	70600
M17 P0+500						
-NW	< 0,017	< 17	109600	61199	16300	76000
M18 P0+500						
-NW	1,117	1117	83900	121580	21700	67700
M19 P0+500						
-NW	< 0,017	< 17	121600	94532	22700	65700
M20 P0-500						
-NW	2,517	2517	90000	41780	21200	54000
M21 P0-500						
-NW	< 0,017	< 17	96700	101232	15500	75600
M22 P0+500						
-NW	2,267	2267	77000	132300	26700	77900

M23 P0+500						
-NW	< 0,017	< 17	91900	72933	13200	63700
M24 P0+500						
-NW	1,800	1800	59700	41440	25100	46200
M1 P0+500 -						
SE	2,667	2667	130600	139360	21800	59700
M2 P0+500 -						
SE	< 0,017	< 17	37000	35040	< 10000	20000
M3 P0+500 -						
SE	3,117	3117	78400	131380	22000	37800
M4 P0+500 -						
SE	< 0,017	< 17	65000	43840	< 10000	29200
M5 P0+500 -						
SE	1,850	1850	91500	131380	33200	36700
M6 P0+500 -						
SE	< 0,017	< 17	65800	7600	< 10000	34300
M7 P0+500 -						
SE	2,700	2700	105200	100680	25700	42000
M8 P0+500 -						
SE	< 0,017	< 17	59000	112520	< 10000	38600
M9 P0+500 -						
SE	4,933	4933	109700	130560	37000	64700
M10 P0+500						
-SE	< 0,017	< 17	92400	43200	< 10000	56700
M11 P0+500						
-SE	2,683	2683	113700	141900	24700	61000
M12 P0+500						
-SE	< 0,017	< 17	52100	69200	< 10000	23500

M13 P0+500						
-SE	4,183	4183	142800	113740	28800	83300
M14 P0+500						
-SE	< 0,017	< 17	102200	52000	< 10000	59400
M15 P0+500						
-SE	4,083	4083	93600	120820	23900	64500
M16 P0+500						
-SE	< 0,017	< 17	62200	15280	< 10000	32300
M17 P0+500						
-SE	3,700	3700	108800	117240	28600	61100
M18 P0+500						
-SE	< 0,017	< 17	59200	34940	< 10000	33000
M19 P0+500						
-SE	3,383	3383	105900	98300	28900	64900
M20 P0-500						
-SE	< 0,017	< 17	73300	4940	< 10000	48000
M21 P0-500						
-SE	4,267	4267	110700	118120	24200	76900
M22 P0+500						
-SE	< 0,017	< 17	65800	29960	< 10000	60500
M23 P0+500						
-SE	2,667	2667	92000	118860	20000	70100
M24 P0+500						
-SE	< 0,017	< 17	59800	50200	< 10000	30000

Tabla A.7 Resultados de análisis químico de la progresiva P0+600 Chocó 3 zona I.

CORPORACION VENEZOIANA DE GUAYANA	DIV	ISIÓN DE EXPLO	cvgMir	nerven		
DIVISION D	E LABOR	ATORIO				
IND	USTRIAL	ı			23/03	/2010
DPTO DE IN	NVESTIGA	ACION Y				
DESA	ARROLLO)			ORDI	EN 07
	Resultad	os análisis	de muestra	as CHOCO 3	ZONA I	
MUESTRA	Au g/t	ppb Au	ppb Cu	ppm Fe *	ppb Pb	ppb Zn
M0 P0+600 -						
NW	2,633	2633	130700	186100	31500	47900
M1 P0+600 -						
NW	0,700	700	149500	115332	42800	61900
M2 P0+600 -						
NW	0,883	883	134600	165780	30200	74400
M3 P0+600 -						
NW	< 0,017	< 17	120600	81533	13500	70200
M4 P0+600 -						
NW	0,500	500	151900	76020	20700	77200
M5 P0+600 -						
NW	< 0,017	< 17	123400	74599	38100	64100
M6 P0+600 -						
NW	< 0,017	< 17	158200	96980	17400	82400
M7 P0+600 -						
NW	2,833	2833	134000	108966	31000	87900
M8 P0+600 -	1,350	1350	126500	167420	23100	77900

NW						
M9 P0+600 -						
NW	< 0,017	< 17	128100	132699	25900	64900
M10 P0+600						
-NW	1,250	1250	148400	201240	31800	84800
M11 P0+600						
-NW	1,383	1383	161500	144532	23700	76600
M12 P0+600						
-NW	1,167	1167	155700	98860	20600	79300
M13 P0+600						
-NW	< 0,017	< 17	84000	141765	26100	74800
M14 P0+600						
-NW	< 0,017	< 17	86000	88300	9800	71800
M15 P0+600						
-NW	< 0,017	< 17	105500	95032	16600	58900
M16 P0+600						
-NW	< 0,017	< 17	114300	121100	12000	64600
M17 P0+600						
-NW	< 0,017	< 17	105800	98732	29700	59700
M18 P0+600						
-NW	0,750	750	68300	16900	9200	55200
M19 P0+600						
-NW	< 0,017	< 17	94700	98432	18700	55400
M20 P0+600						
-NW	0,300	300	77400	42200	3100	56500
M21 P0+600						
-NW	< 0,017	< 17	73600	68733	16300	52600
M22 P0+600	1,200	1200	103000	184120	10500	74500

-NW						
M23 P0+600						
-NW	< 0,017	< 17	99800	66366	27100	57500
M24 P0+600						
-NW	< 0,017	< 17	66900	47340	8300	53700
M1 P0+600 -						
SE	1,050	1050	102400	195780	49600	39600
M2 P0+600 -						
SE	4,967	4967	36800	99200	< 10000	57500
M3 P0+600 -						
SE	1,450	1450	90400	172700	39400	39200
M4 P0+600 -						
SE	1,317	1317	40600	40920	< 10000	55500
M5 P0+600 -						
SE	5,333	5333	92300	141500	55000	35800
M6 P0+600 -						
SE	0,967	967	49000	49520	< 10000	60700
M7 P0+600 -						
SE	0,883	883	92800	151060	33300	41800
M8 P0+600 -						
SE	0,750	750	71000	85660	< 10000	75700
M9 P0+600 -						
SE	3,467	3467	133800	173880	41700	85700
M10 P0+600						
-SE	0,867	867	60400	42580	< 10000	42000
M11 P0+600						
-SE	2,967	2967	155200	173880	35200	75800
M12 P0+600	1,867	1867	62100	78960	< 10000	44800

-SE						
M13 P0+600						
-SE	2,733	2733	100500	171060	32800	66700
M14 P0+600						
-SE	< 0,017	< 17	60200	54620	< 10000	76400
M15 P0+600						
-SE	2,117	2117	99600	130080	37400	68500
M16 P0+600						
-SE	0,317	317	75700	41380	< 10000	57300
M17 P0+600						
-SE	1,867	1867	99500	141420	34900	71800
M18 P0+600						
-SE	< 0,017	< 17	53300	8020	< 10000	30000
M19 P0+600						
-SE	3,367	3367	144000	139900	34400	76700
M20 P0+600						
-SE	0,550	550	83700	81300	< 10000	69800
M21 P0+600						
-SE	2,700	2700	101400	169880	21900	74500
M22 P0+600						
-SE	< 0,017	< 17	100700	68400	< 10000	66600
M23 P0+600						
-SE	2,050	2050	143600	159060	31200	89900
M24 P0+600						
-SE	< 0,017	< 17	88100	102700	< 10000	45400

Tabla A.8 Resultados de análisis químico de la progresiva P0+700 Chocó 3 zona I.

CORPORACION VENEZOLANA DE GUAYANA	DIV	ISIÓN DE EXPLO	cvgMin	erven		
DIVISION D	E LABOR	ATORIO				
IND	USTRIAL	1			23/03	/2010
DPTO DE IN	VESTIGA	ACION Y				
DESA	ARROLL	0			ORDI	EN 08
	Resultad	os análisis	de muestra	s CHOCO 3	ZONA I	
MUESTRA	Au g/t	ppb Au	ppb Cu	ppm Fe *	ppb Pb	ppb Zn
M0 P0+700 -						
NW	8,950	8950	110500	27924	26000	100600
M1 P0+700 -						
NW	1,900	1900	130100	148160	24500	79900
M2 P0+700 -						
NW	1,967	1967	123400	21851	28200	70400
M3 P0+700 -						
NW	1,367	1367	162300	151700	30200	78600
M4 P0+700 -						
NW	3,300	3300	153800	28894	29800	107100
M5 P0+700 -						
NW	1,567	1567	139200	158740	23000	81400
M6 P0+700 -						
NW	3,950	3950	23950	28544	28800	76300
M7 P0+700 -						
NW	1,967	1967	150600	159580	26100	68200
M8 P0+700 -	8,833	8833	130600	25817	34200	67400

NW						
M9 P0+700 -						
NW	1,383	1383	147100	183400	24800	70500
M10 P0+700						
-NW	3,167	3167	109300	26557	40100	68000
M11 P0+700						
-NW	0,683	683	127700	177400	22600	67300
M12 P0+700						
-NW	7,833	7833	101200	12059	30400	54300
M13 P0+700						
-NW	< 0,017	< 17	112300	63699	24100	65900
M14 P0+700						
-NW	7,617	7617	79900	20208	24000	55600
M15 P0+700						
-NW	< 0,017	< 17	103600	40566	24900	60300
M16 P0+700						
-NW	1,650	1650	124900	22988	33500	51300
M17 P0+700						
-NW	< 0,017	< 17	91100	115932	29000	50700
M18 P0+700						
-NW	1,350	1350	80700	25917	29700	53100
M19 P0+700						
-NW	< 0,017	< 17	120300	167865	33800	72300
M20 P0+700						
-NW	0,817	817	83800	21774	41100	133320
M21 P0+700						
-NW	< 0,017	< 17	92600	108099	21700	68200
M22 P0+700	0,233	233	74900	24384	31400	79900

-NW						
M23 P0+700						
-NW	0,767	767	77700	93366	25000	59300
M24 P0+700						
-NW	1,150	1150	105100	21318	30800	126654
M1 P0+700 -						
SE	1,700	1700	122900	154240	50900	96800
M2 P0+700 -						
SE	0,683	683	67500	54500	14600	86300
M3 P0+700 -						
SE	1,633	1633	124000	148160	75800	80600
M4 P0+700 -						
SE	1,017	1017	58500	79580	< 10000	91400
M5 P0+700 -						
SE	2,850	2850	105500	129840	42400	73700
M6 P0+700 -						
SE	1,550	1550	59900	52080	29200	98400
M7 P0+700 -						
SE	2,350	2350	95900	128600	37100	64600
M8 P0+700 -						
SE	< 0,017	< 17	66500	61940	< 10000	83400
M9 P0+700 -						
SE	2,333	2333	90600	123880	39400	45200
M10 P0+700						
-SE	< 0,017	< 17	55000	47300	< 10000	83400
M11 P0+700						
-SE	2,000	2000	113300	153520	48600	71600
M12 P0+700	< 0,017	< 17	47500	47740	< 10000	74500

-SE						
M13 P0+700						
-SE	2,967	2967	111000	160360	56900	81800
M14 P0+700						
-SE	< 0,017	< 17	58400	40800	10500	88300
M15 P0+700						
-SE	0,917	917	90700	127720	38500	62200
M16 P0+700						
-SE	3,267	3267	70000	34720	< 10000	94800
M17 P0+700						
-SE	0,900	900	115800	170740	71100	83000
M18 P0+700						
-SE	3,433	3433	65000	51520	< 10000	84500
M19 P0+700						
-SE	2,983	2983	135900	172140	72700	68800
M20 P0+700						
-SE	3,767	3767	55200	56520	< 10000	99400
M21 P0+700						
-SE	1,000	1000	102100	195860	38000	75500
M22 P0+700						
-SE	2,983	2983	75400	60700	< 10000	75300
M23 P0+700						
-SE	1,933	1933	119700	185920	58100	49500
M24 P0+700						
-SE	8,150	8150	82700	97560	18700	76000

Tabla A.9 Resultados de análisis químico de la progresiva P0+800 Chocó 3 zona I.

CORPORACION VENEZOLANA DE GUAYANA	DIVISIÓN DE GEOLOGÍA DE EXPLORACIÓN				cvgMii	nerven
DIVISION D	E LABOR	ATORIO				
IND	USTRIAL	_			15/04	/2010
DPTO DE IN	VESTIGA	ACION Y				
DESA	ARROLL	O			ORD	EN 09
	Resultad	los análisis	de muestra	as CHOCO 3	ZONA I	
MUESTRA	Au g/t	ppb Au	ppb Cu	ppm Fe *	ppb Pb	ppb Zn
M0 P0+800 -						
NW	3,783	3783	119600	22701	33300	74100
M1 P0+800 -						
NW	1,300	1300	112600	160700	38700	66800
M2 P0+800 -						
NW	0,983	983	126700	21561	26600	69200
M3 P0+800 -						
NW	1,417	1417	122500	131500	14800	64900
M4 P0+800 -						
NW	11,067	11067	129200	27741	28200	89000
M5 P0+800 -						
NW	1,450	1450	132100	156700	40900	75200
M6 P2+800 -						
NW	1,150	1150	149700	19651	34200	82700
M7 P2+800 -						
NW	1,633	1633	174300	202680	27700	92700

M8 P0+800 -						
NW	6,783	6783	134100	22121	33300	75000
M9 P0+800 -						
NW	6,750	6750	175200	130440	19500	74900
M10 P0+800						
-NW	4,367	4367	103800	21021	25000	61300
M11 P0+800						
-NW	6,467	6467	160400	139940	13500	69200
M12 P0+800						
-NW	10,800	10800	91500	20798	28900	67100
M13 P0+800						
-NW	1,517	1517	115800	109780	23600	36600
M14 P0+800						
-NW	2,500	2500	83800	16785	25000	58300
M15 P0+800						
-NW	4,967	4967	106800	116960	19600	65000
M16 P0+800						
-NW	13,850	13850	122600	27527	31800	56100
M17 P0+800						
-NW	0,200	200	92000	177840	20200	62200
M18 P0+800						
-NW	0,667	667	83700	30024	36900	66700
M19 P0+800						
-NW	11,067	11067	96600	177000	23600	66100
M20 P0+800						
-NW	5,650	5650	84700	21198	33000	60200
M21 P0+800						
-NW	< 0,017	< 17	112300	181800	26300	77700

M22 P0+800						
-NW	< 0,017	< 17	67600	18032	28900	46400
M23 P0+800						
-NW	< 0,017	< 17	107800	123020	21500	63700
M24 P0+800						
-NW	7,700	7700	96800	22768	25500	64100
M1 P0+800 -						
SE	2,817	2817	103300	113300	38000	67900
M2 P0+800 -						
SE	1,950	1950	116700	49760	23600	92300
M3 P0+800 -						
SE	1,217	1217	131800	131440	56100	74700
M4 P0+800 -						
SE	2,133	2133	116900	112700	22700	91200
M5 P0+800 -						
SE	0,817	817	115900	128800	41800	83400
M6 P0+800 -						
SE	2,500	2500	118100	53280	22000	86800
M7 P0+800 -						
SE	0,900	900	122600	127760	36400	83800
M8 P0+800 -						
SE	2,000	2000	127800	109260	22100	82300
M9 P0+800 -						
SE	2,150	2150	82100	118820	31000	70900
M10 P0+800						
-SE	1,850	1850	105500	70400	17600	76200
M11 P0+800						
-SE	1,000	1000	126600	124580	58000	75800

M12 P0+800						
-SE	0,433	433	100600	53260	87100	68600
M13 P0+800						
-SE	0,950	950	112100	137800	58700	76600
M14 P0+800						
-SE	0,967	967	128100	97020	26900	82000
M15 P0+800						
-SE	1,917	1917	115600	127160	56900	78600
M16 P0+800						
-SE	0,317	317	99800	91220	14100	74100
M17 P0+800						
-SE	1,850	1850	85800	135200	37700	60200
M18 P0+800						
-SE	0,500	500	164500	103740	13100	76600
M19 P0+800						
-SE	1,983	1983	109600	129840	41400	60500
M20 P0+800						
-SE	1,117	1117	80500	97640	10600	70300
M21 P0+800						
-SE	1,483	1483	69800	127500	35800	53900
M22 P0+800						
-SE	1,167	1167	94600	110620	7100	71000
M23 P0+800						
-SE	1,933	1933	89600	103500	57200	57100
M24 P0+800						
-SE	1,283	1283	85900	56860	10900	63100

Tabla A.10 Resultados de análisis químico de la progresiva P0+900 Chocó 3 zona I.

CORPORACION VENEZOIANA DE GUAYANA	DIV	ISIÓN DE EXPLO	CVGMI	nerver		
DIVISION D	E LABOR	ATORIO				
	USTRIAL				15/04	/2010
DPTO DE IN	VESTIGA	ACION Y				
DESA	ARROLLO)			ORD	EN 10
	Resultad	os análisis	de muestra	s CHOCO 3	ZONA I	
MUESTRA	Au g/t	ppb Au	ppb Cu	ppm Fe *	ppb Pb	ppb Zn
M0 P0+900 -						
NW	2,450	2450	130900	21928	32300	65700
M1 P0+900 -						
NW	2,450	2450	120500	144200	38600	56600
M2 P0+900 -						
NW	1,050	1050	143400	29124	35300	91400
M3 P0+900 -						
NW	3,283	3283	133600	178160	26700	86200
M4 P0+900 -						
NW	3,683	3683	144100	23411	29400	61400
M5 P0+900 -						
NW	3,433	3433	146000	185760	34600	85000
M6 P0+900 -						
NW	1,883	1883	138900	26647	31700	82400
M7 P0+900 -	2,367	2367	155500	151360	23700	71500

NW						
M8 P0+900 -						
NW	1,983	1983	122400	23234	35200	69900
M9 P0+900 -						
NW	1,933	1933	118700	144440	27700	73700
M10 P0+900						
-NW	1,917	1917	140300	25894	65300	109100
M11 P0+900						
-NW	5,750	5750	144500	168340	34600	92800
M12 P0+900						
-NW	3,417	3417	95300	16722	24800	66500
M13 P0+900						
-NW	1,400	1400	130600	110200	33900	70700
M14 P0+900						
-NW	1,383	1383	89100	16975	26700	62800
M15 P0+900						
-NW	5,467	5467	115900	114320	21700	65400
M16 P0+900						
-NW	1,483	1483	117200	22928	32100	69300
M17 P0+900						
-NW	3,367	3367	112600	124660	23500	66600
M18 P0+900						
-NW	3,283	3283	98900	22728	28800	61400
M19 P0+900						
-NW	0,600	600	113100	195480	18500	76600
M20 P0+900						
-NW	0,617	617	73400	26164	39900	67600
M21 P0+900	2,567	2567	124400	158420	14500	64700

-NW						
M22 P0+900						
-NW	0,550	550	82500	16968	29900	56700
M23 P0+900						
-NW	2,967	2967	138500	173780	21700	66200
M24 P0+900						
-NW	1,533	1533	61000	21948	31500	63700
M1 P0+900 -						
SE	2,567	2567	152700	148780	27900	88500
M2 P0+900 -						
SE	1,267	1267	103100	167560	10600	64200
M3 P0+900 -						
SE	4,100	4100	117500	182800	41800	87500
M4 P0+900 -						
SE	< 0,017	< 17	134300	66220	4300	66200
M5 P0+900 -						
SE	2,400	2400	152700	164740	47700	107800
M6 P0+900 -						
SE	< 0,017	< 17	124900	96780	3200	72300
M7 P0+900 -						
SE	1,883	1883	116000	125140	46700	93900
M8 P0+900 -						
SE	< 0,017	< 17	125200	91820	1400	68100
M8 P0+900 -						
SE	5,167	5167	115400	132880	43900	56300
M10 P0+900						
-SE	< 0,017	< 17	127400	127400	1400	64100
M11 P0+900	4,850	4850	143000	125280	38200	73000

-SE						
M12 P0+900						
-SE	< 0,017	< 17	108500	62500	21100	61200
M13 P0+900						
-SE	1,417	1417	119500	176300	33800	65100
M14 P0+900						
-SE	< 0,017	< 17	104100	92580	19000	66500
M15 P0+900						
-SE	2,633	2633	145900	164580	59000	76500
M16 P0+900						
-SE	< 0,017	< 17	149000	150520	27200	83400
M17 P0+900						
-SE	0,833	833	92200	136020	55500	82000
M18 P0+900						
-SE	< 0,017	< 17	105700	69960	13500	60800
M19 P0+900						
-SE	3,383	3383	100200	115620	47800	73100
M20 P0+900						
-SE	< 0,017	< 17	111400	70240	14500	67900
M21 P0+900						
-SE	1,783	1783	116200	116880	37500	64400
M22 P0+900						
-SE	< 0,017	< 17	108600	77060	14000	68200
M23 P0+900						
-SE	2,183	2183	102300	138200	38100	61800
M24 P0+900						
-SE	< 0,017	< 17	105900	85520	14500	79500

APÉNDICE B

Resultados de la prospección geoquímica

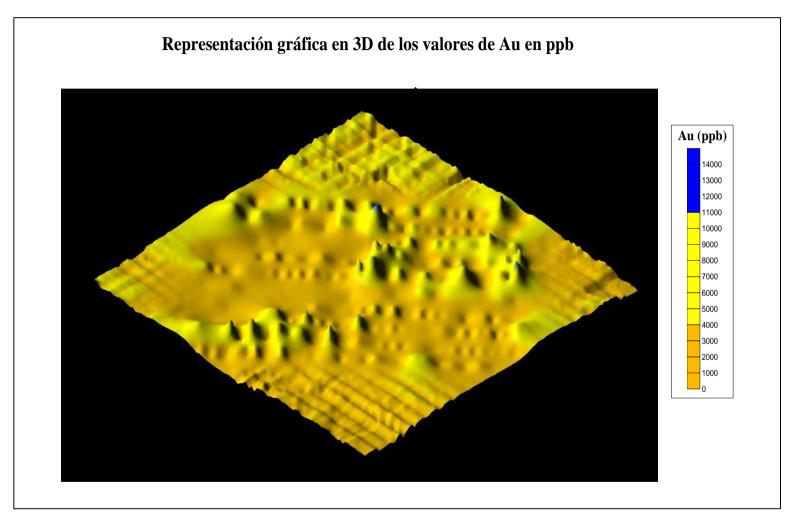


Figura B.1 Representación gráfica en 3D de los valores de Au en ppb.

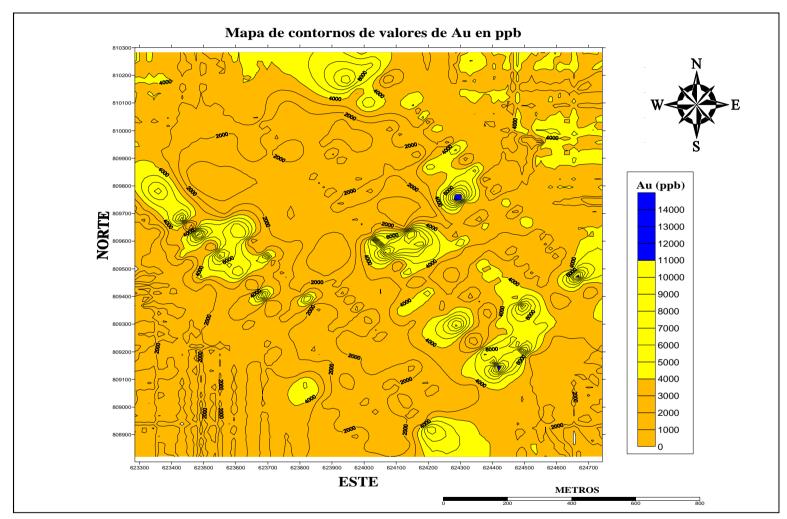


Figura B.2 Mapa de contornos de valores de Au en ppb.

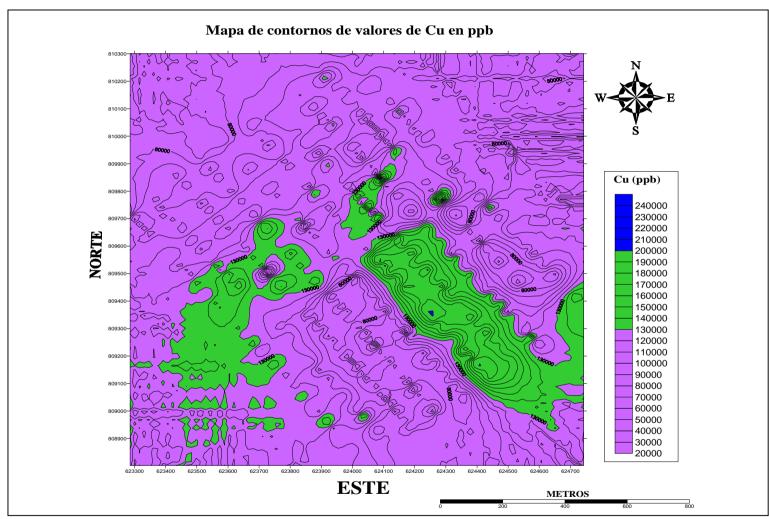


Figura B.3 Mapa de contornos de valores de Cu en ppb.

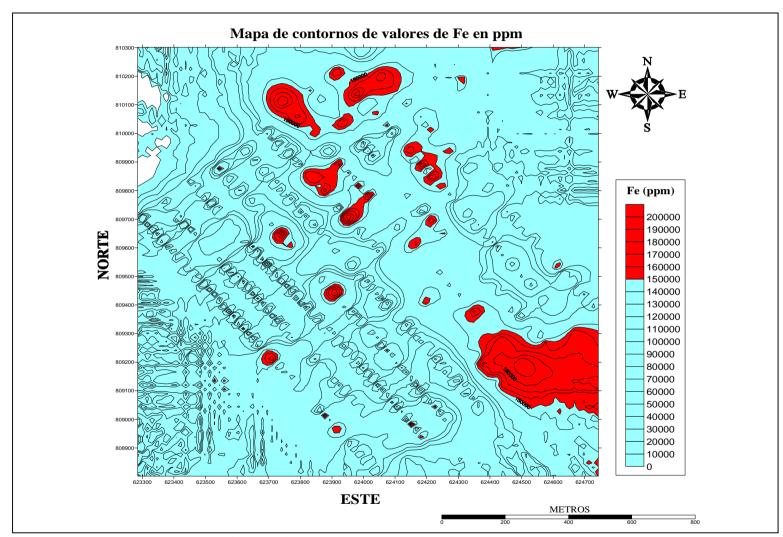


Figura B.4 Mapa de contornos de valores de Fe en ppm.

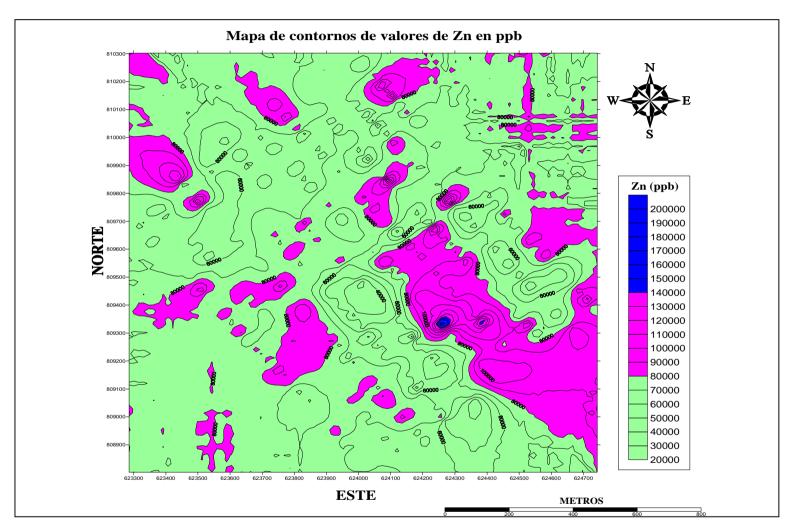


Figura B.5 Mapa de contornos de valores de Zn en ppb.

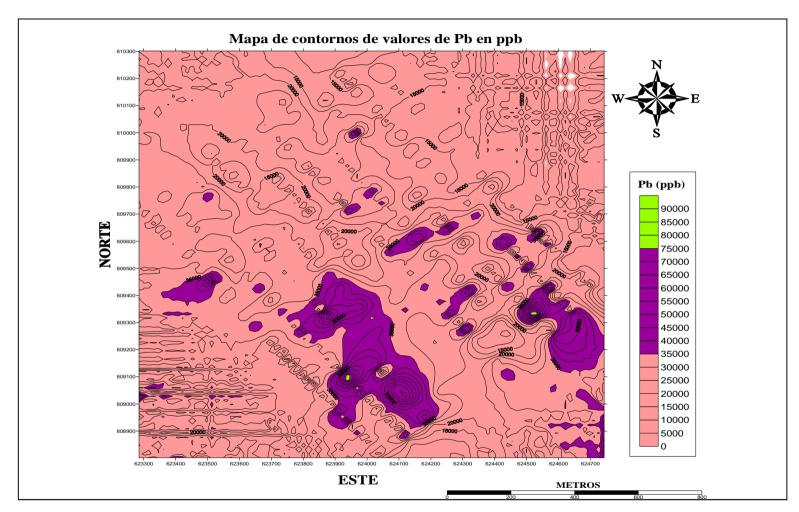


Figura B.6 Mapa de contornos de valores de Pb en ppb.

APÉNDICE C

Resultados de los análisis estadísticos

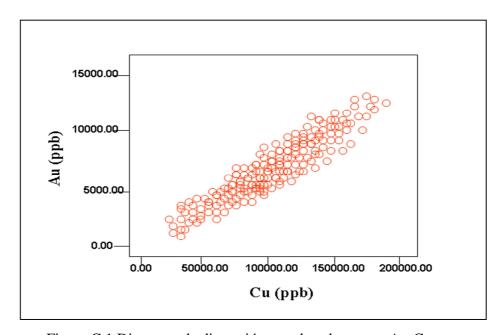


Figura C.1 Diagrama de dispersión para los elementos Au-Cu.

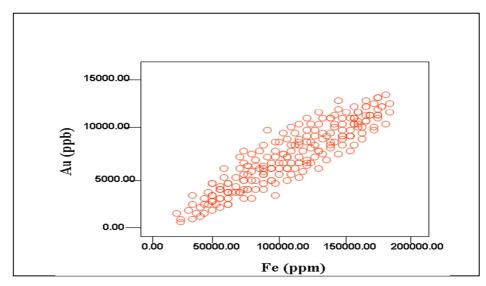


Figura C.2 Diagrama de dispersión para los elementos Au-Fe.

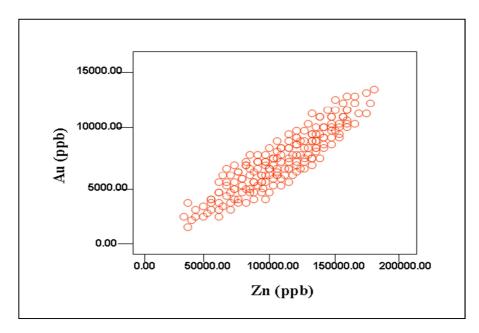


Figura C.3 Diagrama de dispersión para los elementos Au-Zn.

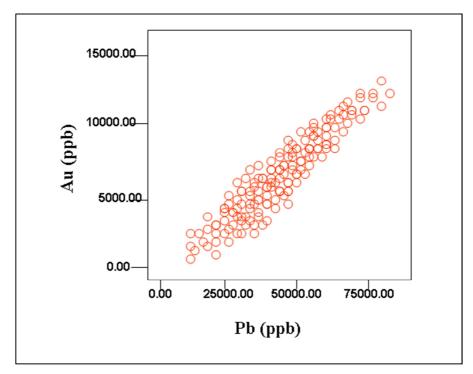


Figura C.4 Diagrama de dispersión para los elementos Au-Pb.

Hoja de Metadatos para Tesis y Trabajos de Ascenso – 1/5

Título	CARACTERIZACIÓN GEOLÓGICA - GEOQUÍMICA PARA DETERMINAR ANOMALÍAS AURÍFERAS ASOCIADAS AL Cu, Fe, Zn Y Pb EN LA ZONA I DE LA CONCESIÓN MINERA CHOCÓ 3, PERTENECIENTE A C.V.G MINERVEN. MUNICIPIO AUTÓNOMO EL CALLAO, ESTADO BOLÍVAR.
Subtítulo	

Autor(es)

Apellidos y Nombres	Cód	Código CVLAC / e-mail		
	CVLAC			
LOPEZ R., KRYSTEL M.	e-mail	lopezk84@gmail.com		
	e-mail			
	CVLAC			
BLANCO H., FERMALIA A.	e-mail	fermaliab@gmail.com		
,	e-mail			

Palabras o frases claves:

CARACTERIZACIÓN	
GEOQUÍMICA	
ANOMALÍAS	
GEOLÓGICA	

Hoja de Metadatos para Tesis y Trabajos de Ascenso – 2/5

Líneas y sublíneas de investigación:

Área	Subárea
Ciencias de la tierra	Geologia
Ciencias de la tierra	Ingenieria Geologica

Resumen (abstract): El área de estudio se localiza en el Municipio Autónomo El Callao del estado Bolívar, Venezuela, aproximadamente a cinco (5) kilómetros al Oeste de la población de El Callao. Desde este pueblo por la vía asfaltada se comunica con el caserío El Chocó. El proyecto consistió en realizar una Caracterización Geológica-Geoquímica en la zona I de la concesión minera Chocó 3, perteneciente a la Corporación Venezolana de Guayana (C.V.G Minerven C.A), a fin de determinar anomalías auríferas y guías de mineralización, que sirvan para planificar, programar y ejecutar sondeos cortos, para la evaluación de Reservas Geológicas. El plan de actividades radicó primero en hacer un reconocimiento de la zona, luego en llevar a cabo un muestreo geoquímico sobre una red de picas levantadas topográficamente con una línea base (EJE CENTRAL) con dirección NE-SO de 900 metros de largo y 10 picas transversales con dirección NO-SE; el largo de cada transversal es de 600 metros en ambos sentidos, espaciadas entre ellas cada 100 metros, para un total de 108 hectáreas; las dimensiones de cada calicata aproximadamente es de 25 cm de diámetro por 50 cm de profundidad separadas una de la otra 25 metros, en las que se recolectaron un total de 490 muestras de suelos para ser analizadas en el laboratorio industrial de la compañía C.V.G MINERVEN por el método de Absorción Atómica. Los resultados se expresan en ppb para los elementos Oro (Au), Cobre (Cu), Zinc (Zn), Plomo (Pb), y en ppm para el elemento Hierro (Fe), se seleccionaron estos elementos por su asociación geoquímica con este tipo de mineralización. Una vez obtenidos los resultados de laboratorio de los análisis de los suelos se llevó a cabo la elaboración de los diferentes mapas geoquímicos con la ayuda del programa Surfer 8 y gráficas geoestadísticas utilizando el programa SPSS versión 15, para correlacionar los resultados de oro (Au) con los valores de Cu, Fe, Zn y Pb respectivamente. En el mapa geoquímico se pueden considerar dos zonas anómalas ya que contienen valores considerables de Oro entre 4 y 11 gramos por tonelada (g/t) ó 4000.00 - 11000.00 partes por billón (ppb), dichas anomalías fueron enumeradas como A I y A II siendo la anomalía A I, la que presenta mayor respuesta anómala abarcando un área de 20 hectáreas aproximadamente con tendencia estructural NO-SE. Considerando los altos valores obtenidos es posible que las anomalías geoquímicas encontradas en la zona de prospección estén reflejando en superficie una posible mineralización a profundidad. Por otra parte, al igual que los mapas geoquímicos también fue posible interpretar los mapas topográfico y geológico del área de estudio, donde se pueden observar que la zona está dominada por un sistema de fallas de tipo "shear zone" (zona de cizalla) con dirección NE-SO.

Hoja de Metadatos para Tesis y Trabajos de Ascenso – 3/5 Contribuidores:

Apellidos y Nombres	RC	DL / Código CVLAC / e-mail
SALAZAR, EDIXON R.	ROL	CA AS TU X JU
	CVLAC	
	e-mail	
	e-mail	
CASTILLO, LINO.	ROL	CA AS TU JU X
	CVLAC	
	e-mail	
	e-mail	
ACOSTA, ENRIQUE.	ROL	CA AS TU JU X
	CVLAC	
	e-mail	
	e-mail	

Fecha de discusión y aprobación:

Año	Mes	Día
2010	12	13

Lenguaje: spa

Hoja de Metadatos para Tesis y Trabajos de Ascenso – 4/5 Archivo(s):

Nombre de archivo	Tipo MIME			
TESIS Caracterizacion Geologica- Geoquimica para determinar anoma auriferas.doc	Aplication/msword			
Alcance:				
Espacial:	(Opcional)			
Temporal:	(Opcional)			
Título o Grado asociado con el trabajo:	GEÓLOGO E INGENIERO GEÓLOGO			
Nivel Asociado con el GEÓLOGO E INGENIERO GEÓLOGO Trabajo:				
Área de GEOLOGÍA Y GEOTECNIA Estudio:				
Institución(es) que garantiza(n) el grado:	Título o Universidad de Oriente			

Hoja de Metadatos para Tesis y Trabajos de Ascenso – 5/5

Derechos:

De acuerdo al articulo 44 del reglamento de trabajos de grado "Los Trabajos de grado son exclusiva propiedad de la Universidad de Oriente y solo podrán ser utilizadas a otros fines con el consentimiento del consejo de núcleo respectivo, quien lo participara al Consejo Universitario"

Condiciones bajo las cuales los autores aceptan que el trabajo sea distribuído. La idea es dar la máxima distribución posible a las ideas contenidas en el trabajo, salvaguardando al mismo tiempo los derechos de propiedad intelectual de los realizadores del trabajo, y los beneficios para los autores y/o la Universidad de Oriente que pudieran derivarse de patentes comerciales o industriales.

AUTOR 1

AUTOR 2

AUTOR 3

TUTOR

JURADO 1

AUTOR 4

JURADO 2

POR LA SUBCOMISION DE TESIS